A Survey on Fault Diagnosis of Rotating Machinery Based on Machine Learning

断层(地质) 计算机科学 人工智能 机器学习 工程类 地震学 地质学
作者
Qi Wang,Rui Huang,Jianbin Xiong,Xiangjun Dong,Jianxiang Yang,Yipeng Wu,Yinbo Wu,Tiantian Lu
出处
期刊:Measurement Science and Technology [IOP Publishing]
标识
DOI:10.1088/1361-6501/ad6203
摘要

Abstract With the booming development of modern industrial technology, rotating machinery fault diagnosis is of great significance to improve the safety, efficiency and sustainable development of industrial production. Machine learning as an effective solution for fault identification, has advantages over traditional fault diagnosis solutions in processing complex data, achieving automation and intelligence, adapting to different fault types, and continuously optimizing. It has high application value and broad development prospects in the field of fault diagnosis of rotating machinery. Therefore, this article reviews machine learning and its applications in intelligent fault diagnosis technology and covers advanced topics in emerging deep learning techniques and optimization methods. Firstly, this article briefly introduces the theories of several main machine learning methods, including Extreme Learning Machines (ELM), Support Vector Machines (SVM), Convolutional Neural Networks (CNN), Deep Belief Networks (DBN) and related emerging deep learning technologies such as Transformer, adversarial neural network (GAN) and graph neural network (GNN) in recent years. The optimization techniques for diagnosing faults in rotating machinery are subsequently investigated. Then, a brief introduction is given to the papers on the application of these machine learning methods in the field of rotating machinery fault diagnosis, and the application characteristics of various methods are summarized. Finally, this survey discusses the problems to be solved by machine learning in fault diagnosis of rotating machinery and proposes an outlook.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
7777135发布了新的文献求助10
1秒前
tyanna完成签到,获得积分20
3秒前
3秒前
4秒前
拟岸发布了新的文献求助10
4秒前
小亿发布了新的文献求助10
4秒前
科目三应助jianning采纳,获得10
4秒前
orixero应助QLR采纳,获得10
6秒前
8秒前
8秒前
8秒前
8秒前
8秒前
一念澄澈发布了新的文献求助10
8秒前
Garfield发布了新的文献求助10
9秒前
10秒前
Wa完成签到,获得积分10
10秒前
有魅力魂幽完成签到,获得积分10
10秒前
木子木公完成签到,获得积分10
11秒前
bleem完成签到,获得积分10
11秒前
KYRIAL发布了新的文献求助10
12秒前
完美世界应助宁静致远采纳,获得10
12秒前
13秒前
DT发布了新的文献求助10
13秒前
白水晶完成签到,获得积分10
14秒前
在水一方应助Wa采纳,获得10
14秒前
winterm完成签到,获得积分20
14秒前
14秒前
15秒前
17秒前
白水晶发布了新的文献求助10
19秒前
二三发布了新的文献求助10
19秒前
碧蓝醉蓝酱酱完成签到,获得积分10
19秒前
小竹笋完成签到 ,获得积分10
22秒前
22秒前
李爱国应助安详向薇采纳,获得10
24秒前
26秒前
KYRIAL发布了新的文献求助10
26秒前
风中的以山完成签到 ,获得积分10
27秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
宽禁带半导体紫外光电探测器 588
Chen Hansheng: China’s Last Romantic Revolutionary 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141967
求助须知:如何正确求助?哪些是违规求助? 2792975
关于积分的说明 7804827
捐赠科研通 2449305
什么是DOI,文献DOI怎么找? 1303150
科研通“疑难数据库(出版商)”最低求助积分说明 626807
版权声明 601291