The Role of Spatial Morphology in Forest Landscape Fragmentation: Insights From Planted and Natural Forests of the Chinese Loess Plateau

黄土高原 碎片(计算) 自然(考古学) 天然林 黄土 农林复合经营 地理 形态学(生物学) 生态学 林业 环境科学 地质学 土壤科学 生物 地貌学 考古 古生物学
作者
Mei Zhang,Shichuan Yu,Zhong Zhao
出处
期刊:Land Degradation & Development [Wiley]
被引量:2
标识
DOI:10.1002/ldr.5282
摘要

ABSTRACT This study aimed to emphasize the key role of spatial morphology of planted and natural forests on landscape fragmentation and to furnish a scientific foundation for the effective assessment of ecological restoration projects of vegetation on the Loess Plateau. The spatial morphological pattern and landscape fragmentation characteristics were analyzed using morphological spatial pattern analysis (MSPA) and forest area density methods. This is the inaugural study to reveal the linear and nonlinear relationships between forest landscape fragmentation and its driving factors using machine learning methods and introducing morphological indicators with two different strategies. The results showed significant differences in the spatial patterns and landscape fragmentation characteristics between planted and natural forests. The spatial patterns of planted and natural forests were found to be dominated by “Core” in terms of area, while “Branch” was more prevalent in terms of number. Compared to natural forests, planted forests were more fragmented. The introduction of the MSPA indicator significantly enhanced the explanatory power and predictive performance of the model despite the disparate contribution rates of the driving factors in planted and natural forests. This study highlights the importance of spatial morphology in understanding forest landscape fragmentation and provides a new combination of analytical techniques to better understand the complexity of forest ecosystems. These provide new insights into forest landscape restoration and sustainable management on the Loess Plateau.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彩色不评完成签到,获得积分10
1秒前
chen发布了新的文献求助10
1秒前
拼搏惜金完成签到,获得积分10
2秒前
昏睡的妙梦完成签到 ,获得积分10
2秒前
2秒前
冷酷的追命完成签到,获得积分20
2秒前
shu发布了新的文献求助10
3秒前
赘婿应助赐图图一篇SCI采纳,获得10
4秒前
q792309106发布了新的文献求助10
4秒前
小蘑菇应助魔幻的曼寒采纳,获得10
5秒前
6秒前
卜凡发布了新的文献求助10
7秒前
8秒前
斯文败类应助Chelry采纳,获得10
10秒前
Rondab应助HJJHJH采纳,获得10
11秒前
Ava应助小坤采纳,获得10
11秒前
失眠采白发布了新的文献求助10
12秒前
15秒前
16秒前
kk子完成签到,获得积分10
17秒前
大反应釜完成签到,获得积分10
18秒前
jdjd完成签到,获得积分10
19秒前
holly发布了新的文献求助10
20秒前
21秒前
爆米花应助大气的忆枫采纳,获得10
21秒前
宵宫完成签到,获得积分10
22秒前
22秒前
隐形曼青应助裴帅龙采纳,获得10
24秒前
科研通AI5应助水濑心源采纳,获得30
25秒前
鲜艳的帅哥完成签到,获得积分10
28秒前
holly完成签到,获得积分10
28秒前
31秒前
猪猪hero应助水濑心源采纳,获得10
32秒前
淡然绝山发布了新的文献求助10
32秒前
jenningseastera应助Georgechan采纳,获得30
33秒前
SYLH应助Young采纳,获得10
33秒前
清爽的水蓝完成签到,获得积分10
35秒前
35秒前
36秒前
37秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3991847
求助须知:如何正确求助?哪些是违规求助? 3532997
关于积分的说明 11260291
捐赠科研通 3272252
什么是DOI,文献DOI怎么找? 1805688
邀请新用户注册赠送积分活动 882609
科研通“疑难数据库(出版商)”最低求助积分说明 809425