The Role of Spatial Morphology in Forest Landscape Fragmentation: Insights From Planted and Natural Forests of the Chinese Loess Plateau

黄土高原 碎片(计算) 自然(考古学) 天然林 黄土 农林复合经营 地理 形态学(生物学) 生态学 林业 环境科学 地质学 土壤科学 生物 地貌学 考古 古生物学
作者
Mei Zhang,Shichuan Yu,Zhong Zhao
出处
期刊:Land Degradation & Development [Wiley]
卷期号:35 (17): 5100-5114 被引量:4
标识
DOI:10.1002/ldr.5282
摘要

ABSTRACT This study aimed to emphasize the key role of spatial morphology of planted and natural forests on landscape fragmentation and to furnish a scientific foundation for the effective assessment of ecological restoration projects of vegetation on the Loess Plateau. The spatial morphological pattern and landscape fragmentation characteristics were analyzed using morphological spatial pattern analysis (MSPA) and forest area density methods. This is the inaugural study to reveal the linear and nonlinear relationships between forest landscape fragmentation and its driving factors using machine learning methods and introducing morphological indicators with two different strategies. The results showed significant differences in the spatial patterns and landscape fragmentation characteristics between planted and natural forests. The spatial patterns of planted and natural forests were found to be dominated by “Core” in terms of area, while “Branch” was more prevalent in terms of number. Compared to natural forests, planted forests were more fragmented. The introduction of the MSPA indicator significantly enhanced the explanatory power and predictive performance of the model despite the disparate contribution rates of the driving factors in planted and natural forests. This study highlights the importance of spatial morphology in understanding forest landscape fragmentation and provides a new combination of analytical techniques to better understand the complexity of forest ecosystems. These provide new insights into forest landscape restoration and sustainable management on the Loess Plateau.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
orixero应助年轻就要气盛采纳,获得10
3秒前
violet完成签到,获得积分20
4秒前
充电宝应助健忘的雨安采纳,获得10
6秒前
dfggg发布了新的文献求助10
6秒前
饱满的问丝完成签到,获得积分10
7秒前
8秒前
大水完成签到 ,获得积分10
9秒前
9秒前
Akira完成签到,获得积分20
10秒前
隐形曼青应助是ok耶采纳,获得10
11秒前
12秒前
12秒前
11111发布了新的文献求助20
13秒前
大水发布了新的文献求助10
15秒前
15秒前
小蘑菇应助保持科研热情采纳,获得10
15秒前
所所应助蓦然采纳,获得10
16秒前
16秒前
爱科研的小蜗啊完成签到,获得积分10
17秒前
从容梦山发布了新的文献求助10
17秒前
17秒前
17秒前
量子星尘发布了新的文献求助10
18秒前
18秒前
19秒前
luo完成签到,获得积分10
20秒前
21秒前
HQQ完成签到,获得积分20
21秒前
Ava应助夏洛采纳,获得10
22秒前
小二郎应助violet采纳,获得10
22秒前
乐观的灭绝完成签到,获得积分10
23秒前
文艺大白菜完成签到,获得积分10
23秒前
难过的谷芹应助无为采纳,获得10
23秒前
情怀应助Ljh采纳,获得10
24秒前
25秒前
25秒前
25秒前
赘婿应助秋qiu采纳,获得10
25秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5737586
求助须知:如何正确求助?哪些是违规求助? 5373212
关于积分的说明 15335749
捐赠科研通 4880965
什么是DOI,文献DOI怎么找? 2623199
邀请新用户注册赠送积分活动 1572027
关于科研通互助平台的介绍 1528848