The Role of Spatial Morphology in Forest Landscape Fragmentation: Insights From Planted and Natural Forests of the Chinese Loess Plateau

黄土高原 碎片(计算) 自然(考古学) 天然林 黄土 农林复合经营 地理 形态学(生物学) 生态学 林业 环境科学 地质学 土壤科学 生物 地貌学 考古 古生物学
作者
Mei Zhang,Shichuan Yu,Zhong Zhao
出处
期刊:Land Degradation & Development [Wiley]
卷期号:35 (17): 5100-5114 被引量:4
标识
DOI:10.1002/ldr.5282
摘要

ABSTRACT This study aimed to emphasize the key role of spatial morphology of planted and natural forests on landscape fragmentation and to furnish a scientific foundation for the effective assessment of ecological restoration projects of vegetation on the Loess Plateau. The spatial morphological pattern and landscape fragmentation characteristics were analyzed using morphological spatial pattern analysis (MSPA) and forest area density methods. This is the inaugural study to reveal the linear and nonlinear relationships between forest landscape fragmentation and its driving factors using machine learning methods and introducing morphological indicators with two different strategies. The results showed significant differences in the spatial patterns and landscape fragmentation characteristics between planted and natural forests. The spatial patterns of planted and natural forests were found to be dominated by “Core” in terms of area, while “Branch” was more prevalent in terms of number. Compared to natural forests, planted forests were more fragmented. The introduction of the MSPA indicator significantly enhanced the explanatory power and predictive performance of the model despite the disparate contribution rates of the driving factors in planted and natural forests. This study highlights the importance of spatial morphology in understanding forest landscape fragmentation and provides a new combination of analytical techniques to better understand the complexity of forest ecosystems. These provide new insights into forest landscape restoration and sustainable management on the Loess Plateau.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
lei完成签到,获得积分20
1秒前
归尘应助QAQSS采纳,获得10
1秒前
呆萌冷风发布了新的文献求助10
2秒前
2秒前
Chenly发布了新的文献求助30
3秒前
123完成签到 ,获得积分10
3秒前
3秒前
AyraN完成签到,获得积分10
3秒前
3秒前
4秒前
小牛牛发布了新的文献求助10
4秒前
4秒前
LLHHZZ发布了新的文献求助10
4秒前
4秒前
大模型应助泯珉采纳,获得10
5秒前
KKZNB发布了新的文献求助10
5秒前
李健的小迷弟应助石头采纳,获得10
5秒前
wwwwwwww发布了新的文献求助10
5秒前
忧伤的冰彤完成签到,获得积分10
5秒前
玄月发布了新的文献求助10
5秒前
jias完成签到,获得积分10
6秒前
丘比特应助贾舒涵采纳,获得10
6秒前
范兆飞发布了新的文献求助10
7秒前
喜悦绿旋发布了新的文献求助10
7秒前
lixiang发布了新的文献求助10
7秒前
7秒前
搜集达人应助Will采纳,获得10
7秒前
8秒前
8秒前
只呜朱发布了新的文献求助10
9秒前
天天快乐应助昼夜本色采纳,获得10
9秒前
ywyw完成签到 ,获得积分10
9秒前
可爱的函函应助林云夕采纳,获得10
10秒前
领导范儿应助Potato采纳,获得30
10秒前
10秒前
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5719182
求助须知:如何正确求助?哪些是违规求助? 5255402
关于积分的说明 15287996
捐赠科研通 4869073
什么是DOI,文献DOI怎么找? 2614641
邀请新用户注册赠送积分活动 1564561
关于科研通互助平台的介绍 1521851