The Role of Spatial Morphology in Forest Landscape Fragmentation: Insights From Planted and Natural Forests of the Chinese Loess Plateau

黄土高原 碎片(计算) 自然(考古学) 天然林 黄土 农林复合经营 地理 形态学(生物学) 生态学 林业 环境科学 地质学 土壤科学 生物 地貌学 考古 古生物学
作者
Mei Zhang,Shichuan Yu,Zhong Zhao
出处
期刊:Land Degradation & Development [Wiley]
卷期号:35 (17): 5100-5114 被引量:4
标识
DOI:10.1002/ldr.5282
摘要

ABSTRACT This study aimed to emphasize the key role of spatial morphology of planted and natural forests on landscape fragmentation and to furnish a scientific foundation for the effective assessment of ecological restoration projects of vegetation on the Loess Plateau. The spatial morphological pattern and landscape fragmentation characteristics were analyzed using morphological spatial pattern analysis (MSPA) and forest area density methods. This is the inaugural study to reveal the linear and nonlinear relationships between forest landscape fragmentation and its driving factors using machine learning methods and introducing morphological indicators with two different strategies. The results showed significant differences in the spatial patterns and landscape fragmentation characteristics between planted and natural forests. The spatial patterns of planted and natural forests were found to be dominated by “Core” in terms of area, while “Branch” was more prevalent in terms of number. Compared to natural forests, planted forests were more fragmented. The introduction of the MSPA indicator significantly enhanced the explanatory power and predictive performance of the model despite the disparate contribution rates of the driving factors in planted and natural forests. This study highlights the importance of spatial morphology in understanding forest landscape fragmentation and provides a new combination of analytical techniques to better understand the complexity of forest ecosystems. These provide new insights into forest landscape restoration and sustainable management on the Loess Plateau.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Akim应助赵雨卓采纳,获得10
1秒前
大玉124发布了新的文献求助10
1秒前
1秒前
杂化轨道退役研究员完成签到,获得积分10
1秒前
健康的冬日完成签到,获得积分10
1秒前
Ava应助科研通管家采纳,获得30
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
Orange应助科研通管家采纳,获得10
2秒前
大个应助科研通管家采纳,获得10
2秒前
桐桐应助科研通管家采纳,获得30
2秒前
烟花应助科研通管家采纳,获得10
2秒前
Ymmm发布了新的文献求助10
2秒前
星辰大海应助科研通管家采纳,获得10
2秒前
pluto应助科研通管家采纳,获得10
3秒前
Ava应助科研通管家采纳,获得10
3秒前
3秒前
无花果应助科研通管家采纳,获得10
3秒前
慕青应助科研通管家采纳,获得10
3秒前
3秒前
pluto应助科研通管家采纳,获得10
3秒前
汉堡包应助科研通管家采纳,获得10
3秒前
3秒前
章鱼应助科研通管家采纳,获得10
3秒前
酷波er应助科研通管家采纳,获得10
3秒前
科目三应助科研通管家采纳,获得10
3秒前
大个应助科研通管家采纳,获得10
4秒前
李爱国应助科研通管家采纳,获得10
4秒前
pluto应助科研通管家采纳,获得10
4秒前
4秒前
思源应助科研通管家采纳,获得10
4秒前
脑洞疼应助科研通管家采纳,获得10
4秒前
4秒前
小蘑菇应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
舒苏应助科研通管家采纳,获得10
4秒前
标致凝莲完成签到 ,获得积分10
4秒前
4秒前
舒心凡应助Yayaaaaa采纳,获得50
4秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5609726
求助须知:如何正确求助?哪些是违规求助? 4694294
关于积分的说明 14881987
捐赠科研通 4720227
什么是DOI,文献DOI怎么找? 2544836
邀请新用户注册赠送积分活动 1509735
关于科研通互助平台的介绍 1472996