The Role of Spatial Morphology in Forest Landscape Fragmentation: Insights From Planted and Natural Forests of the Chinese Loess Plateau

黄土高原 碎片(计算) 自然(考古学) 天然林 黄土 农林复合经营 地理 形态学(生物学) 生态学 林业 环境科学 地质学 土壤科学 生物 地貌学 考古 古生物学
作者
Mei Zhang,Shichuan Yu,Zhong Zhao
出处
期刊:Land Degradation & Development [Wiley]
卷期号:35 (17): 5100-5114 被引量:4
标识
DOI:10.1002/ldr.5282
摘要

ABSTRACT This study aimed to emphasize the key role of spatial morphology of planted and natural forests on landscape fragmentation and to furnish a scientific foundation for the effective assessment of ecological restoration projects of vegetation on the Loess Plateau. The spatial morphological pattern and landscape fragmentation characteristics were analyzed using morphological spatial pattern analysis (MSPA) and forest area density methods. This is the inaugural study to reveal the linear and nonlinear relationships between forest landscape fragmentation and its driving factors using machine learning methods and introducing morphological indicators with two different strategies. The results showed significant differences in the spatial patterns and landscape fragmentation characteristics between planted and natural forests. The spatial patterns of planted and natural forests were found to be dominated by “Core” in terms of area, while “Branch” was more prevalent in terms of number. Compared to natural forests, planted forests were more fragmented. The introduction of the MSPA indicator significantly enhanced the explanatory power and predictive performance of the model despite the disparate contribution rates of the driving factors in planted and natural forests. This study highlights the importance of spatial morphology in understanding forest landscape fragmentation and provides a new combination of analytical techniques to better understand the complexity of forest ecosystems. These provide new insights into forest landscape restoration and sustainable management on the Loess Plateau.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乾坤完成签到,获得积分10
2秒前
mengdewen完成签到,获得积分10
2秒前
蒸盐粥发布了新的文献求助10
3秒前
3秒前
tomorrow发布了新的文献求助10
4秒前
4秒前
Ray发布了新的文献求助10
4秒前
5秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
7秒前
西西里柠檬完成签到,获得积分10
9秒前
sxmt123456789发布了新的文献求助10
10秒前
美好斓发布了新的文献求助10
10秒前
zhengguolong完成签到,获得积分10
12秒前
优美紫槐发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
14秒前
sxmt123456789完成签到,获得积分10
15秒前
15秒前
麦地娜发布了新的文献求助30
15秒前
16秒前
16秒前
17秒前
17秒前
18秒前
王王应助kklove采纳,获得20
19秒前
CAOHOU应助单薄的八宝粥采纳,获得10
19秒前
FashionBoy应助单薄的八宝粥采纳,获得10
20秒前
斯文败类应助优美紫槐采纳,获得10
20秒前
tomorrow完成签到,获得积分10
21秒前
21秒前
Mayday发布了新的文献求助10
21秒前
hx0107完成签到,获得积分20
21秒前
看文献了发布了新的文献求助10
22秒前
24秒前
25秒前
凯王爷应助彩虹小马采纳,获得10
25秒前
无花果应助坦率的之卉采纳,获得10
26秒前
量子星尘发布了新的文献求助10
27秒前
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5729568
求助须知:如何正确求助?哪些是违规求助? 5319394
关于积分的说明 15317016
捐赠科研通 4876593
什么是DOI,文献DOI怎么找? 2619440
邀请新用户注册赠送积分活动 1568984
关于科研通互助平台的介绍 1525535