GGN-GO: geometric graph networks for predicting protein function by multi-scale structure features

图形 计算机科学 比例(比率) 蛋白质功能预测 功能(生物学) 人工智能 模式识别(心理学) 蛋白质功能 理论计算机科学 生物 地图学 地理 生物化学 进化生物学 基因
作者
Jia Mi,Sheng Wang,Jing Li,Jinghong Sun,Chang Li,Jing Wan,Yuan Zeng,Jingyang Gao
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:25 (6)
标识
DOI:10.1093/bib/bbae559
摘要

Recent advances in high-throughput sequencing have led to an explosion of genomic and transcriptomic data, offering a wealth of protein sequence information. However, the functions of most proteins remain unannotated. Traditional experimental methods for annotation of protein functions are costly and time-consuming. Current deep learning methods typically rely on Graph Convolutional Networks to propagate features between protein residues. However, these methods fail to capture fine atomic-level geometric structural features and cannot directly compute or propagate structural features (such as distances, directions, and angles) when transmitting features, often simplifying them to scalars. Additionally, difficulties in capturing long-range dependencies limit the model's ability to identify key nodes (residues). To address these challenges, we propose a geometric graph network (GGN-GO) for predicting protein function that enriches feature extraction by capturing multi-scale geometric structural features at the atomic and residue levels. We use a geometric vector perceptron to convert these features into vector representations and aggregate them with node features for better understanding and propagation in the network. Moreover, we introduce a graph attention pooling layer captures key node information by adaptively aggregating local functional motifs, while contrastive learning enhances graph representation discriminability through random noise and different views. The experimental results show that GGN-GO outperforms six comparative methods in tasks with the most labels for both experimentally validated and predicted protein structures. Furthermore, GGN-GO identifies functional residues corresponding to those experimentally confirmed, showcasing its interpretability and the ability to pinpoint key protein regions. The code and data are available at: https://github.com/MiJia-ID/GGN-GO.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
神斩发布了新的文献求助30
1秒前
Steven发布了新的文献求助10
3秒前
管箴发布了新的文献求助10
4秒前
5秒前
幸福岩完成签到,获得积分10
6秒前
7秒前
wz关注了科研通微信公众号
7秒前
8秒前
Liufgui应助魔音甜菜采纳,获得10
9秒前
9秒前
七一琦完成签到,获得积分10
9秒前
9秒前
10秒前
leo完成签到,获得积分20
11秒前
11秒前
12秒前
163发布了新的文献求助10
14秒前
14秒前
甜甜圈发布了新的文献求助10
15秒前
16秒前
16秒前
可爱的函函应助liu_zc采纳,获得10
17秒前
17秒前
Liufgui应助啊哭采纳,获得10
18秒前
18秒前
Steven发布了新的文献求助10
19秒前
水加冰糖发布了新的文献求助10
20秒前
希望天下0贩的0应助163采纳,获得10
20秒前
h。完成签到,获得积分10
20秒前
大地完成签到,获得积分10
20秒前
21秒前
22秒前
23秒前
24秒前
h。发布了新的文献求助10
25秒前
randylch完成签到,获得积分0
25秒前
25秒前
于于发布了新的文献求助10
26秒前
26秒前
hakuna_matata完成签到 ,获得积分10
26秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998871
求助须知:如何正确求助?哪些是违规求助? 3538355
关于积分的说明 11273977
捐赠科研通 3277299
什么是DOI,文献DOI怎么找? 1807509
邀请新用户注册赠送积分活动 883909
科研通“疑难数据库(出版商)”最低求助积分说明 810075