亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Generative adversarial network for Multimodal Contrastive Domain Sharing based on efficient invariant feature-centric growth analysis improved brain tumor classification

计算机科学 卷积神经网络 人工智能 模式识别(心理学) 分类 特征(语言学) 感知器 深度学习 人工神经网络 哲学 语言学
作者
Amarendra Reddy Panyala,M. Baskar
出处
期刊:Electromagnetic Biology and Medicine [Informa]
卷期号:: 1-15
标识
DOI:10.1080/15368378.2024.2375266
摘要

Efficient and accurate classification of brain tumor categories remains a critical challenge in medical imaging. While existing techniques have made strides, their reliance on generic features often leads to suboptimal results. To overcome these issues, Multimodal Contrastive Domain Sharing Generative Adversarial Network for Improved Brain Tumor Classification Based on Efficient Invariant Feature Centric Growth Analysis (MCDS-GNN-IBTC-CGA) is proposed in this manuscript.Here, the input imagesare amassed from brain tumor dataset. Then the input images are preprocesssed using Range – Doppler Matched Filter (RDMF) for improving the quality of the image. Then Ternary Pattern and Discrete Wavelet Transforms (TPDWT) is employed for feature extraction and focusing on white, gray mass, edge correlation, and depth features. The proposed method leverages Multimodal Contrastive Domain Sharing Generative Adversarial Network (MCDS-GNN) to categorize brain tumor images into Glioma, Meningioma, and Pituitary tumors. Finally, Coati Optimization Algorithm (COA) optimizes MCDS-GNN's weight parameters. The proposed MCDS-GNN-IBTC-CGA is empirically evaluated utilizing accuracy, specificity, sensitivity, Precision, F1-score,Mean Square Error (MSE). Here, MCDS-GNN-IBTC-CGA attains 12.75%, 11.39%, 13.35%, 11.42% and 12.98% greater accuracy comparing to the existingstate-of-the-arts techniques, likeMRI brain tumor categorization utilizing parallel deep convolutional neural networks (PDCNN-BTC), attention-guided convolutional neural network for the categorization of braintumor (AGCNN-BTC), intelligent driven deep residual learning method for the categorization of braintumor (DCRN-BTC),fully convolutional neural networks method for the classification of braintumor (FCNN-BTC), Convolutional Neural Network and Multi-Layer Perceptron based brain tumor classification (CNN-MLP-BTC) respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
顾矜应助李嘉图采纳,获得10
11秒前
Panther完成签到,获得积分10
20秒前
lcs完成签到,获得积分10
21秒前
李健应助knoren采纳,获得10
22秒前
专注的流沙完成签到 ,获得积分10
50秒前
53秒前
1分钟前
1分钟前
康康发布了新的文献求助10
1分钟前
李嘉图发布了新的文献求助10
1分钟前
1分钟前
1分钟前
李嘉图完成签到,获得积分10
1分钟前
1分钟前
YY完成签到,获得积分20
1分钟前
JXC发布了新的文献求助10
1分钟前
1分钟前
YY发布了新的文献求助10
2分钟前
2分钟前
fantw发布了新的文献求助60
2分钟前
所所应助优秀的大有采纳,获得10
2分钟前
康康完成签到,获得积分10
2分钟前
ZY关闭了ZY文献求助
2分钟前
fantw完成签到,获得积分10
2分钟前
2分钟前
3分钟前
Owen应助科研通管家采纳,获得10
3分钟前
领导范儿应助优秀的大有采纳,获得10
3分钟前
优秀的大有完成签到,获得积分10
3分钟前
上官若男应助章鱼采纳,获得10
3分钟前
3分钟前
科研通AI2S应助任震宇采纳,获得10
4分钟前
4分钟前
knoren发布了新的文献求助10
4分钟前
Lin.隽发布了新的文献求助20
4分钟前
5分钟前
ZY发布了新的文献求助10
5分钟前
5分钟前
ZY完成签到,获得积分10
5分钟前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139573
求助须知:如何正确求助?哪些是违规求助? 2790430
关于积分的说明 7795297
捐赠科研通 2446910
什么是DOI,文献DOI怎么找? 1301487
科研通“疑难数据库(出版商)”最低求助积分说明 626238
版权声明 601146