Exploring temporal sensitivity in the brain using multi-timescale language models: an EEG decoding study

脑电图 解码方法 灵敏度(控制系统) 计算机科学 语言模型 语音识别 人工智能 心理学 神经科学 算法 电子工程 工程类
作者
Sijie Ling,A. St. J. Murphy,Alona Fyshe
出处
期刊:Computational Linguistics [Association for Computational Linguistics]
卷期号:: 1-30
标识
DOI:10.1162/coli_a_00533
摘要

Abstract The brain’s ability to perform complex computations at varying timescales is crucial, ranging from understanding single words to grasping the overarching narrative of a story. Recently, multi-timescale long short-term memory (MT-LSTM) models (Mahto et al. 2020; Jain et al. 2020) have been introduced, which use temporally-tuned parameters to induce sensitivity to different timescales of language processing (i.e. related to near/distant words). However, there has not been an exploration of the relation between such temporally-tuned information processing in MT-LSTMs and the brain’s language processing using high temporal resolution recording modalities, such as electroencephalography (EEG). To bridge this gap, we used an EEG dataset recorded while participants listened to Chapter 1 of “Alice in Wonderland” and trained ridge regression models to predict the temporally-tuned MT-LSTM embeddings from EEG responses. Our analysis reveals that EEG signals can be used to predict MT-LSTM embeddings across various timescales. For longer timescales, our models produced accurate predictions within an extended time window of ±2 s around word onset, while for shorter timescales, significant predictions are confined to a narrow window ranging from −180 ms to 790 ms. Intriguingly, we observed that short timescale information is not only processed in the vicinity of word onset but also at distant time points. These observations underscore the parallels and discrepancies between computational models and the neural mechanisms of the brain. As word embeddings are used more as in silico models of semantic representation in the brain, a more explicit consideration of timescale-dependent processing enables more targeted explorations of language processing in humans and machines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田様应助huyux采纳,获得10
2秒前
大蟋蟀发布了新的文献求助10
4秒前
ljw完成签到,获得积分20
4秒前
斯文败类应助夕荀采纳,获得10
5秒前
排骨大王发布了新的文献求助10
5秒前
酷炫的雅香关注了科研通微信公众号
6秒前
史小菜应助yishan101采纳,获得20
9秒前
momo完成签到,获得积分10
9秒前
10秒前
suchui完成签到 ,获得积分10
11秒前
12秒前
13秒前
2:38am完成签到 ,获得积分10
14秒前
14秒前
Vernon完成签到,获得积分10
16秒前
atonnng发布了新的文献求助10
16秒前
阿桂发布了新的文献求助10
17秒前
大蟋蟀完成签到,获得积分10
19秒前
998172完成签到,获得积分10
20秒前
21秒前
第五明月完成签到,获得积分10
22秒前
xl_c完成签到,获得积分10
22秒前
直率的心情完成签到,获得积分10
23秒前
热心市民小红花应助SAINT采纳,获得10
24秒前
25秒前
25秒前
任性的岱周完成签到,获得积分10
26秒前
26秒前
量子星尘发布了新的文献求助10
26秒前
陈可蓉发布了新的文献求助10
26秒前
atonnng完成签到,获得积分10
26秒前
FIN应助lilei采纳,获得30
29秒前
jhy发布了新的文献求助10
29秒前
夕荀发布了新的文献求助10
30秒前
天天快乐应助ljw采纳,获得10
30秒前
淡水痕发布了新的文献求助10
31秒前
33秒前
嗯哼完成签到,获得积分20
33秒前
34秒前
34秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959733
求助须知:如何正确求助?哪些是违规求助? 3506004
关于积分的说明 11127299
捐赠科研通 3237957
什么是DOI,文献DOI怎么找? 1789411
邀请新用户注册赠送积分活动 871741
科研通“疑难数据库(出版商)”最低求助积分说明 803000