Exploring temporal sensitivity in the brain using multi-timescale language models: an EEG decoding study

脑电图 解码方法 灵敏度(控制系统) 计算机科学 语言模型 语音识别 人工智能 心理学 神经科学 算法 电子工程 工程类
作者
Sijie Ling,A. St. J. Murphy,Alona Fyshe
出处
期刊:Computational Linguistics [MIT Press]
卷期号:: 1-28
标识
DOI:10.1162/coli_a_00533
摘要

Abstract The brain’s ability to perform complex computations at varying timescales is crucial, ranging from understanding single words to grasping the overarching narrative of a story. Recently, multi-timescale long short-term memory (MT-LSTM) models (Mahto et al. 2020; Jain et al. 2020) have been introduced, which use temporally-tuned parameters to induce sensitivity to different timescales of language processing (i.e. related to near/distant words). However, there has not been an exploration of the relation between such temporally-tuned information processing in MT-LSTMs and the brain’s language processing using high temporal resolution recording modalities, such as electroencephalography (EEG). To bridge this gap, we used an EEG dataset recorded while participants listened to Chapter 1 of “Alice in Wonderland” and trained ridge regression models to predict the temporally-tuned MT-LSTM embeddings from EEG responses. Our analysis reveals that EEG signals can be used to predict MT-LSTM embeddings across various timescales. For longer timescales, our models produced accurate predictions within an extended time window of ±2 s around word onset, while for shorter timescales, significant predictions are confined to a narrow window ranging from −180 ms to 790 ms. Intriguingly, we observed that short timescale information is not only processed in the vicinity of word onset but also at distant time points. These observations underscore the parallels and discrepancies between computational models and the neural mechanisms of the brain. As word embeddings are used more as in silico models of semantic representation in the brain, a more explicit consideration of timescale-dependent processing enables more targeted explorations of language processing in humans and machines.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
武雨寒发布了新的文献求助10
1秒前
2秒前
锦鲤发布了新的文献求助10
2秒前
scott910806完成签到,获得积分10
2秒前
给我一支西地兰完成签到,获得积分10
2秒前
田様应助JXY采纳,获得10
2秒前
shirley要奋斗完成签到 ,获得积分10
3秒前
小黑爱搞科研完成签到,获得积分20
5秒前
5秒前
雪莉完成签到 ,获得积分10
6秒前
科研通AI2S应助重要的道之采纳,获得20
7秒前
醉仙发布了新的文献求助10
7秒前
8秒前
8秒前
9秒前
大个应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
paparazzi221应助科研通管家采纳,获得50
10秒前
10秒前
传奇3应助科研通管家采纳,获得10
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
Hello应助科研通管家采纳,获得10
10秒前
科目三应助科研通管家采纳,获得10
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
赘婿应助科研通管家采纳,获得10
10秒前
隐形曼青应助科研通管家采纳,获得10
10秒前
无情山水完成签到,获得积分10
12秒前
12秒前
阿鑫发布了新的文献求助10
12秒前
13秒前
weishen完成签到,获得积分10
13秒前
14秒前
一一六完成签到,获得积分10
15秒前
15秒前
Orange应助88C真是太神奇啦采纳,获得10
15秒前
小洁完成签到 ,获得积分10
15秒前
rgaerva应助给我一支西地兰采纳,获得10
16秒前
超级映安发布了新的文献求助10
16秒前
17秒前
17秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135027
求助须知:如何正确求助?哪些是违规求助? 2785983
关于积分的说明 7774640
捐赠科研通 2441787
什么是DOI,文献DOI怎么找? 1298184
科研通“疑难数据库(出版商)”最低求助积分说明 625088
版权声明 600825