清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Early prediction of sepsis in emergency department patients using various methods and scoring systems

急诊科 败血症 医学 急诊医学 医疗急救 内科学 护理部
作者
Yuegang Song,Hao‐Neng Huang,Jiajun Ma,Rui Xing,Young-Gi Song,Li Li,Jin Zhou,Chun‐Quan Ou
出处
期刊:Nursing in critical care [Wiley]
卷期号:30 (3): e13201-e13201 被引量:4
标识
DOI:10.1111/nicc.13201
摘要

Abstract Background Early recognition of sepsis, a common life‐threatening condition in intensive care units (ICUs), is beneficial for improving patient outcomes. However, most sepsis prediction models were trained and assessed in the ICU, which might not apply to emergency department (ED) settings. Aim To establish an early predictive model based on basic but essential information collected upon ED presentation for the follow‐up diagnosis of sepsis observed in the ICU. Study Design This study developed and validated a reliable model of sepsis prediction among ED patients by comparing 10 different methods based on retrospective electronic health record data from the MIMIC‐IV database. In‐ICU sepsis was identified as the primary outcome. The potential predictors encompassed baseline demographics, vital signs, pain scale, chief complaints and Emergency Severity Index (ESI). 80% and 20% of the total of 425 737 ED visit records were randomly selected for the train set and the test set for model development and validation, respectively. Results Among the methods evaluated, XGBoost demonstrated an optimal predictive performance with an area under the curve (AUC) of 0.90 (95% CI: 0.90–0.91). Logistic regression exhibited a comparable predictive ability to XGBoost, with an AUC of 0.89 (95% CI: 0.89–0.90), along with a sensitivity and specificity of 85% (95% CI: 0.83–0.86) and 78% (95% CI: 0.77–0.80), respectively. Neither of the five commonly used severity scoring systems demonstrated satisfactory performance for sepsis prediction. The predictive ability of using ESI as the sole predictor (AUC: 0.79, 95% CI: 0.78–0.80) was also inferior to the model integrating ESI and other basic information. Conclusions The use of ESI combined with basic clinical information upon ED presentation accurately predicted sepsis among ED patients, strengthening its application in ED. Relevance to Clinical Practice The proposed model may assist nurses in risk stratification management and prioritize interventions for potential sepsis patients, even in low‐resource settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
12秒前
25秒前
30秒前
44秒前
初夏发布了新的文献求助10
51秒前
56秒前
老老熊完成签到,获得积分10
1分钟前
yang完成签到,获得积分10
1分钟前
我是老大应助初夏采纳,获得10
1分钟前
勤劳的斑马完成签到,获得积分10
1分钟前
乐观帅哥完成签到 ,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
简单应助科研通管家采纳,获得10
2分钟前
研友_VZG7GZ应助斯文墨镜采纳,获得10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
胖小羊完成签到 ,获得积分10
2分钟前
2分钟前
斯文墨镜完成签到,获得积分20
2分钟前
斯文墨镜发布了新的文献求助10
2分钟前
汪洋一叶完成签到,获得积分10
2分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
生命科学的第一推动力完成签到 ,获得积分10
4分钟前
4分钟前
乔凌云发布了新的文献求助10
4分钟前
ding应助乔凌云采纳,获得10
4分钟前
科研通AI2S应助533采纳,获得10
4分钟前
生命科学完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
房天川完成签到 ,获得积分10
4分钟前
Everything完成签到,获得积分10
4分钟前
如意秋珊完成签到 ,获得积分10
4分钟前
5分钟前
随心所欲完成签到 ,获得积分10
5分钟前
5分钟前
简单应助科研通管家采纳,获得10
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
健壮的鑫鹏完成签到,获得积分10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 2000
Electron Energy Loss Spectroscopy 1500
Processing of reusable surgical textiles for use in health care facilities 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5802079
求助须知:如何正确求助?哪些是违规求助? 5823527
关于积分的说明 15505869
捐赠科研通 4927961
什么是DOI,文献DOI怎么找? 2652972
邀请新用户注册赠送积分活动 1600039
关于科研通互助平台的介绍 1554877