Using computer vision of facial expressions to assess symptom domains and treatment response in antipsychotic‐naïve patients with first‐episode psychosis

阳性与阴性症状量表 精神病理学 面部表情 心理学 面部动作编码系统 精神病 精神分裂症(面向对象编程) 非定型抗精神病薬 抗精神病药 临床心理学 精神科 沟通
作者
Karen S. Ambrosen,Cecilie K. Lemvigh,Mette Ødegaard Nielsen,Birte Glenthøj,Warda Syeda,Bjørn H. Ebdrup
出处
期刊:Acta Psychiatrica Scandinavica [Wiley]
标识
DOI:10.1111/acps.13743
摘要

Abstract Background Facial expressions are a core aspect of non‐verbal communication. Reduced emotional expressiveness of the face is a common negative symptom of schizophrenia, however, quantifying negative symptoms can be clinically challenging and involves a considerable element of rater subjectivity. We used computer vision to investigate if (i) automated assessment of facial expressions captures negative as well as positive and general symptom domains, and (ii) if automated assessments are associated with treatment response in initially antipsychotic‐naïve patients with first‐episode psychosis. Method We included 46 patients (mean age 25.4 (6.1); 65.2% males). Psychopathology was assessed at baseline and after 6 weeks of monotherapy with amisulpride using the Positive and Negative Syndrome Scale (PANSS). Baseline interview videos were recorded. Seventeen facial action units (AUs), that is, activation of muscles, from the Facial Action Coding System were extracted using OpenFace 2.0. A correlation matrix was calculated for each patient. Facial expressions were identified using spectral clustering at group‐level. Associations between facial expressions and psychopathology were investigated using multiple linear regression. Results Three clusters of facial expressions were identified related to different locations of the face. Cluster 1 was associated with positive and general symptoms at baseline, Cluster 2 was associated with all symptom domains, showing the strongest association with the negative domain, and Cluster 3 was only associated with general symptoms. Cluster 1 was significantly associated with the clinically rated improvement in positive and general symptoms after treatment, and Cluster 2 was significantly associated with clinical improvement in all domains. Conclusion Using automated computer vision of facial expressions during PANSS interviews did not only capture negative symptoms but also combinations of the three overall domains of psychopathology. Moreover, automated assessments of facial expressions at baseline were associated with initial antipsychotic treatment response. The findings underscore the clinical relevance of facial expressions and motivate further investigations of computer vision in clinical psychiatry.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
5秒前
Ccccsa完成签到,获得积分20
6秒前
乐乐应助石榴汁的书采纳,获得10
6秒前
7秒前
7秒前
怕孤单的绝义完成签到,获得积分10
7秒前
顺利寻真发布了新的文献求助20
8秒前
9秒前
英俊的铭应助无极微光采纳,获得10
9秒前
失眠洋葱发布了新的文献求助10
9秒前
10秒前
10秒前
量子星尘发布了新的文献求助10
10秒前
pluto应助ZX采纳,获得10
11秒前
12秒前
小木林发布了新的文献求助10
12秒前
sunny发布了新的文献求助10
13秒前
14秒前
hzt完成签到,获得积分20
15秒前
JM关闭了JM文献求助
15秒前
辛勤的绮琴完成签到,获得积分10
17秒前
无极微光发布了新的文献求助10
19秒前
木泽完成签到,获得积分10
19秒前
科研通AI6应助hzt采纳,获得10
20秒前
小木林完成签到,获得积分10
20秒前
20秒前
天苍野茫发布了新的文献求助10
21秒前
21秒前
asd应助kexian_ning采纳,获得30
22秒前
23秒前
24秒前
25秒前
25秒前
yjf,123发布了新的文献求助10
26秒前
东方元语应助无极微光采纳,获得20
26秒前
26秒前
量子星尘发布了新的文献求助10
26秒前
领导范儿应助史超采纳,获得10
27秒前
完美世界应助雾1206采纳,获得10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 6000
Real World Research, 5th Edition 680
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
Advanced Memory Technology: Functional Materials and Devices 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5675174
求助须知:如何正确求助?哪些是违规求助? 4943579
关于积分的说明 15151713
捐赠科研通 4834349
什么是DOI,文献DOI怎么找? 2589438
邀请新用户注册赠送积分活动 1543035
关于科研通互助平台的介绍 1501031