Using computer vision of facial expressions to assess symptom domains and treatment response in antipsychotic‐naïve patients with first‐episode psychosis

阳性与阴性症状量表 精神病理学 面部表情 心理学 面部动作编码系统 精神病 精神分裂症(面向对象编程) 非定型抗精神病薬 抗精神病药 临床心理学 精神科 沟通
作者
Karen S. Ambrosen,Cecilie K. Lemvigh,Mette Ødegaard Nielsen,Birte Glenthøj,Warda Syeda,Bjørn H. Ebdrup
出处
期刊:Acta Psychiatrica Scandinavica [Wiley]
标识
DOI:10.1111/acps.13743
摘要

Abstract Background Facial expressions are a core aspect of non‐verbal communication. Reduced emotional expressiveness of the face is a common negative symptom of schizophrenia, however, quantifying negative symptoms can be clinically challenging and involves a considerable element of rater subjectivity. We used computer vision to investigate if (i) automated assessment of facial expressions captures negative as well as positive and general symptom domains, and (ii) if automated assessments are associated with treatment response in initially antipsychotic‐naïve patients with first‐episode psychosis. Method We included 46 patients (mean age 25.4 (6.1); 65.2% males). Psychopathology was assessed at baseline and after 6 weeks of monotherapy with amisulpride using the Positive and Negative Syndrome Scale (PANSS). Baseline interview videos were recorded. Seventeen facial action units (AUs), that is, activation of muscles, from the Facial Action Coding System were extracted using OpenFace 2.0. A correlation matrix was calculated for each patient. Facial expressions were identified using spectral clustering at group‐level. Associations between facial expressions and psychopathology were investigated using multiple linear regression. Results Three clusters of facial expressions were identified related to different locations of the face. Cluster 1 was associated with positive and general symptoms at baseline, Cluster 2 was associated with all symptom domains, showing the strongest association with the negative domain, and Cluster 3 was only associated with general symptoms. Cluster 1 was significantly associated with the clinically rated improvement in positive and general symptoms after treatment, and Cluster 2 was significantly associated with clinical improvement in all domains. Conclusion Using automated computer vision of facial expressions during PANSS interviews did not only capture negative symptoms but also combinations of the three overall domains of psychopathology. Moreover, automated assessments of facial expressions at baseline were associated with initial antipsychotic treatment response. The findings underscore the clinical relevance of facial expressions and motivate further investigations of computer vision in clinical psychiatry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
T拐拐发布了新的文献求助10
1秒前
1秒前
jimmyhui发布了新的文献求助10
3秒前
王松桐发布了新的文献求助10
4秒前
5秒前
xxfsx应助颜筱茜采纳,获得10
5秒前
xxfsx应助颜筱茜采纳,获得10
6秒前
xxfsx应助颜筱茜采纳,获得10
6秒前
科研通AI6应助谦让小蚂蚁采纳,获得10
6秒前
hh发布了新的文献求助10
7秒前
8秒前
10秒前
12秒前
王小可应助谦让小蚂蚁采纳,获得10
12秒前
zkwgly发布了新的文献求助10
12秒前
12秒前
13秒前
14秒前
999完成签到,获得积分10
14秒前
小二郎应助假装有昵称采纳,获得10
14秒前
15秒前
陶醉巧凡发布了新的文献求助10
15秒前
浮游应助hh采纳,获得10
16秒前
苍蓝所栖发布了新的文献求助10
16秒前
苗觉觉完成签到,获得积分0
17秒前
zkwgly完成签到,获得积分10
18秒前
半颗完成签到 ,获得积分10
18秒前
19秒前
张宁波发布了新的文献求助30
19秒前
19秒前
你都至少信我八分吧完成签到 ,获得积分10
19秒前
心海发布了新的文献求助10
19秒前
小李完成签到,获得积分10
19秒前
19秒前
什么什么发布了新的文献求助10
20秒前
20秒前
量子星尘发布了新的文献求助10
21秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1021
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5484143
求助须知:如何正确求助?哪些是违规求助? 4584418
关于积分的说明 14397830
捐赠科研通 4514421
什么是DOI,文献DOI怎么找? 2473992
邀请新用户注册赠送积分活动 1459944
关于科研通互助平台的介绍 1433349