活性氧
小干扰RNA
炎症体
纳米载体
基因沉默
癌症研究
受体
炎症
化学
细胞生物学
生物化学
转染
医学
生物
免疫学
药物输送
基因
有机化学
作者
Huaner Ni,Hui Zhou,Xin Liang,Yulong Ge,Hangwei Chen,Junyi Liu,Ben Wang,Huiyu Chen,Yu‐Jing Zhang,Sihan Luo,Hao Chen,Xiaomei Lü,Chao Yin,Quli Fan
出处
期刊:ACS Nano
[American Chemical Society]
日期:2024-08-14
标识
DOI:10.1021/acsnano.4c07988
摘要
Atherosclerosis (AS) is a chronic inflammatory disorder characterized by arterial intimal lipid plaques. Small interfering ribonucleic acid (siRNA)-based therapies, with their ability to suppress specific genes with high targeting precision and minimal side effects, have shown great potential for AS treatment. However, targets of siRNA therapies based on macrophages for AS treatment are still limited. Olfactory receptor 2 (Olfr2), a potential target for plaque formation, was discovered recently. Herein, anti-Olfr2 siRNA (si-Olfr2) targeting macrophages was designed, and the theranostic platform encapsulating si-Olfr2 to target macrophages within atherosclerotic lesions was also developed, with the aim of downregulating Olfr2, as well as diagnosing AS through photoacoustic imaging (PAI) in the second near-infrared (NIR-II) window with high resolution. By utilization of a reactive oxygen species (ROS)-responsive nanocarrier system, the expression of Olfr2 on macrophages within atherosclerotic plaques was effectively downregulated, leading to the inhibition of NLR family pyrin domain containing 3 (NLRP3) inflammasome activation and interleukin-1 β (IL-1β) secretion, thereby reducing the formation of atherosclerotic plaques. As manifested by decreased Olfr2 expression, the lesions exhibited a significantly alleviated inflammatory response that led to reduced lipid deposition, macrophage apoptosis, and a noticeable decrease in the necrotic areas. This study provides a proof of concept for evaluating the theranostic nanoplatform to specifically deliver si-Olfr2 to lesional macrophages for AS diagnosis and treatment.
科研通智能强力驱动
Strongly Powered by AbleSci AI