Modeling groundwater redox conditions at national scale through integration of sediment color and water chemistry in a machine learning framework

氧化还原 地下水 接口(物质) 地下水位 土壤科学 水文学(农业) 化学 环境科学 地质学 无机化学 岩土工程 吸附 吉布斯等温线 有机化学
作者
Julian Koch,Hyojin Kim,Joel Tirado-Conde,Birgitte Hansen,Ingelise Møller,Lærke Thorling,Lars Troldborg,Denitza D. Voutchkova,Anker Lajer Højberg
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:947: 174533-174533 被引量:2
标识
DOI:10.1016/j.scitotenv.2024.174533
摘要

Redox conditions play a crucial role in determining the fate of many contaminants in groundwater, impacting ecosystem services vital for both the aquatic environment and human water supply. Geospatial machine learning has previously successfully modelled large-scale redox conditions. This study is the first to consolidate the complementary information provided by sediment color and water chemistry to enhance our understanding of redox conditions in Denmark. In the first step, the depth to the first redox interface is modelled using sediment color from 27,042 boreholes. In the second step, the depth of the first redox interface is compared against water chemistry data at 22,198 wells to classify redox complexity. The absence of nitrate containing water below the first redox interface is referred to as continuous redox conditions. In contrast, discontinuous redox conditions are identified by the presence of nitrate below the first redox interface. Both models are built using 20 covariate maps, encompassing diverse hydrologically relevant information. The first redox interface is modelled with a mean error of 0.0 m and a root-mean-squared error of 8.0 m. The redox complexity model attains an accuracy of 69.8 %. Results indicate a mean depth to the first redox interface of 8.6 m and a standard deviation of 6.5 m. 60 % of Denmark is classified as discontinuous, indicating complex redox conditions, predominantly collocated in clay rich glacial landscapes. Both maps, i.e., first redox interface and redox complexity are largely driven by the water table and hydrogeology. The developed maps contribute to our understanding of subsurface redox processes, supporting national-scale land-use and water management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一一发布了新的文献求助10
刚刚
CC完成签到,获得积分20
1秒前
2秒前
时生111完成签到 ,获得积分10
2秒前
kb发布了新的文献求助10
3秒前
dafwfwaf完成签到,获得积分20
3秒前
Snow完成签到 ,获得积分10
4秒前
4秒前
CC发布了新的文献求助10
4秒前
小苏打完成签到,获得积分10
5秒前
Xiaoxiao应助程琳采纳,获得10
5秒前
ycc完成签到 ,获得积分10
5秒前
畏寒的北完成签到,获得积分10
6秒前
爆米花应助单纯的雅香采纳,获得10
6秒前
俭朴的玉兰完成签到 ,获得积分10
6秒前
7秒前
7秒前
8秒前
8秒前
8秒前
adazbd发布了新的文献求助10
8秒前
Jenny应助木头人采纳,获得10
8秒前
ATAYA完成签到,获得积分10
9秒前
9秒前
畏寒的北发布了新的文献求助10
9秒前
9秒前
10秒前
地下室没有鬼完成签到 ,获得积分10
10秒前
whh123完成签到 ,获得积分10
10秒前
天天快乐应助空禅yew采纳,获得10
11秒前
在水一方应助开心采纳,获得10
12秒前
Akim应助王w采纳,获得10
12秒前
towerman发布了新的文献求助10
12秒前
畅快平蓝完成签到,获得积分10
12秒前
大棒槌发布了新的文献求助10
13秒前
13秒前
Ann完成签到,获得积分10
13秒前
今今发布了新的文献求助10
14秒前
123123完成签到 ,获得积分10
14秒前
SciGPT应助伊酒采纳,获得10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808