Flow field reconstruction from sparse sensor measurements with physics-informed neural networks

物理 人工神经网络 流量(数学) 领域(数学) 统计物理学 机械 人工智能 数学 计算机科学 纯数学
作者
M. Hosseini,Yousef Shiri
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:36 (7) 被引量:27
标识
DOI:10.1063/5.0211680
摘要

In the realm of experimental fluid mechanics, accurately reconstructing high-resolution flow fields is notably challenging due to often sparse and incomplete data across time and space domains. This is exacerbated by the limitations of current experimental tools and methods, which leave critical areas without measurable data. This research suggests a feasible solution to this problem by employing an inverse physics-informed neural network (PINN) to merge available sparse data with physical laws. The method's efficacy is demonstrated using flow around a cylinder as a case study, with three distinct training sets. One was the sparse velocity data from a domain, and the other two datasets were limited velocity data obtained from the domain boundaries and sensors around the cylinder wall. The coefficient of determination (R2) coefficient and mean squared error (RMSE) metrics, indicative of model performance, have been determined for the velocity components of all models. For the 28 sensors model, the R2 value stands at 0.996 with an associated RMSE of 0.0251 for the u component, while for the v component, the R2 value registers at 0.969, accompanied by an RMSE of 0.0169. The outcomes indicate that the method can successfully recreate the actual velocity field with considerable precision with more than 28 sensors around the cylinder, highlighting PINN's potential as an effective data assimilation technique for experimental fluid mechanics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
幽灵发布了新的文献求助10
刚刚
专注的问寒应助黄老牛采纳,获得150
1秒前
bukeshuo发布了新的文献求助10
2秒前
agrlook完成签到,获得积分10
2秒前
小二郎应助chen采纳,获得10
2秒前
4秒前
专注的问寒应助Seona采纳,获得20
4秒前
大个应助xujingyi采纳,获得10
5秒前
biubiubiu发布了新的文献求助10
5秒前
劉劉完成签到 ,获得积分10
6秒前
xz发布了新的文献求助20
8秒前
univ完成签到,获得积分10
9秒前
笑傲江湖完成签到,获得积分10
9秒前
11秒前
kid完成签到,获得积分10
11秒前
Jasper应助123456采纳,获得30
11秒前
lc发布了新的文献求助10
11秒前
11秒前
小白完成签到 ,获得积分10
11秒前
研友_VZG7GZ应助独特的高山采纳,获得10
12秒前
12秒前
13秒前
13秒前
温暖发布了新的文献求助10
15秒前
kid发布了新的文献求助10
15秒前
Dskelf完成签到,获得积分10
16秒前
16秒前
量子星尘发布了新的文献求助10
17秒前
111给111的求助进行了留言
18秒前
123456完成签到 ,获得积分10
18秒前
香蕉从寒完成签到,获得积分10
21秒前
22秒前
小二郎应助坦率老头采纳,获得10
22秒前
22秒前
利于蓄力完成签到,获得积分10
22秒前
23秒前
23秒前
24秒前
25秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646490
求助须知:如何正确求助?哪些是违规求助? 4771445
关于积分的说明 15035283
捐赠科研通 4805288
什么是DOI,文献DOI怎么找? 2569581
邀请新用户注册赠送积分活动 1526573
关于科研通互助平台的介绍 1485858