Flow field reconstruction from sparse sensor measurements with physics-informed neural networks

物理 人工神经网络 流量(数学) 领域(数学) 统计物理学 机械 人工智能 数学 计算机科学 纯数学
作者
M. Hosseini,Yousef Shiri
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:36 (7) 被引量:7
标识
DOI:10.1063/5.0211680
摘要

In the realm of experimental fluid mechanics, accurately reconstructing high-resolution flow fields is notably challenging due to often sparse and incomplete data across time and space domains. This is exacerbated by the limitations of current experimental tools and methods, which leave critical areas without measurable data. This research suggests a feasible solution to this problem by employing an inverse physics-informed neural network (PINN) to merge available sparse data with physical laws. The method's efficacy is demonstrated using flow around a cylinder as a case study, with three distinct training sets. One was the sparse velocity data from a domain, and the other two datasets were limited velocity data obtained from the domain boundaries and sensors around the cylinder wall. The coefficient of determination (R2) coefficient and mean squared error (RMSE) metrics, indicative of model performance, have been determined for the velocity components of all models. For the 28 sensors model, the R2 value stands at 0.996 with an associated RMSE of 0.0251 for the u component, while for the v component, the R2 value registers at 0.969, accompanied by an RMSE of 0.0169. The outcomes indicate that the method can successfully recreate the actual velocity field with considerable precision with more than 28 sensors around the cylinder, highlighting PINN's potential as an effective data assimilation technique for experimental fluid mechanics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
淡定的如风完成签到,获得积分10
刚刚
荆华完成签到,获得积分10
刚刚
老狗完成签到 ,获得积分10
1秒前
2秒前
smart应助bpg28采纳,获得10
2秒前
杏子完成签到,获得积分10
2秒前
HeWA发布了新的文献求助30
3秒前
4秒前
zzz发布了新的文献求助10
5秒前
zhaoyaoshi发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
玲子君完成签到,获得积分20
8秒前
xinxinqi发布了新的文献求助10
8秒前
赵赵a完成签到,获得积分10
11秒前
单纯尔蓝完成签到,获得积分10
11秒前
玲子君发布了新的文献求助10
11秒前
刘敏小七发布了新的文献求助10
11秒前
12秒前
科研通AI2S应助韦觅松采纳,获得10
13秒前
13秒前
sjx完成签到,获得积分10
13秒前
13秒前
xiongzi发布了新的文献求助10
13秒前
wanci应助陈陈陈采纳,获得10
13秒前
13秒前
14秒前
赘婿应助暖暖采纳,获得10
14秒前
酷波er应助李小燕采纳,获得10
15秒前
18秒前
19秒前
缓慢千易发布了新的文献求助10
19秒前
丘佳焜发布了新的文献求助10
20秒前
小巧的寻双完成签到,获得积分10
21秒前
22秒前
22秒前
kedaya应助鲤鱼梦易采纳,获得10
23秒前
研友_8y2G0L发布了新的文献求助30
23秒前
汉堡包应助小星星采纳,获得10
23秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961075
求助须知:如何正确求助?哪些是违规求助? 3507317
关于积分的说明 11135554
捐赠科研通 3239809
什么是DOI,文献DOI怎么找? 1790434
邀请新用户注册赠送积分活动 872380
科研通“疑难数据库(出版商)”最低求助积分说明 803150