Flow field reconstruction from sparse sensor measurements with physics-informed neural networks

物理 人工神经网络 流量(数学) 领域(数学) 统计物理学 机械 人工智能 数学 计算机科学 纯数学
作者
M. Hosseini,Yousef Shiri
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:36 (7) 被引量:21
标识
DOI:10.1063/5.0211680
摘要

In the realm of experimental fluid mechanics, accurately reconstructing high-resolution flow fields is notably challenging due to often sparse and incomplete data across time and space domains. This is exacerbated by the limitations of current experimental tools and methods, which leave critical areas without measurable data. This research suggests a feasible solution to this problem by employing an inverse physics-informed neural network (PINN) to merge available sparse data with physical laws. The method's efficacy is demonstrated using flow around a cylinder as a case study, with three distinct training sets. One was the sparse velocity data from a domain, and the other two datasets were limited velocity data obtained from the domain boundaries and sensors around the cylinder wall. The coefficient of determination (R2) coefficient and mean squared error (RMSE) metrics, indicative of model performance, have been determined for the velocity components of all models. For the 28 sensors model, the R2 value stands at 0.996 with an associated RMSE of 0.0251 for the u component, while for the v component, the R2 value registers at 0.969, accompanied by an RMSE of 0.0169. The outcomes indicate that the method can successfully recreate the actual velocity field with considerable precision with more than 28 sensors around the cylinder, highlighting PINN's potential as an effective data assimilation technique for experimental fluid mechanics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
恶毒的婆婆完成签到,获得积分10
1秒前
1秒前
2秒前
5秒前
善学以致用应助yii采纳,获得10
5秒前
桐桐应助tracer526采纳,获得10
6秒前
7秒前
Lny发布了新的文献求助20
7秒前
熊熊甩锅侠完成签到,获得积分10
9秒前
熟睡的妻子完成签到,获得积分10
9秒前
9秒前
11秒前
Mao发布了新的文献求助10
12秒前
Jasper应助科研通管家采纳,获得10
12秒前
浮游应助科研通管家采纳,获得10
12秒前
12秒前
浮游应助科研通管家采纳,获得10
12秒前
科研通AI6应助科研通管家采纳,获得10
12秒前
12秒前
yu发布了新的文献求助30
13秒前
Zewen_Li应助科研通管家采纳,获得10
13秒前
顾矜应助科研通管家采纳,获得10
13秒前
香蕉觅云应助科研通管家采纳,获得10
13秒前
浮游应助科研通管家采纳,获得10
13秒前
李爱国应助科研通管家采纳,获得10
13秒前
wanci应助科研通管家采纳,获得30
13秒前
蓝天应助科研通管家采纳,获得10
13秒前
浮游应助科研通管家采纳,获得10
13秒前
科研通AI6应助科研通管家采纳,获得10
13秒前
浮游应助科研通管家采纳,获得10
13秒前
13秒前
浮游应助科研通管家采纳,获得10
13秒前
Verity应助科研通管家采纳,获得10
13秒前
14秒前
巩佳铭完成签到,获得积分10
16秒前
16秒前
儒雅从筠完成签到,获得积分10
16秒前
17秒前
科研通AI6应助yyy采纳,获得10
18秒前
巩佳铭发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560419
求助须知:如何正确求助?哪些是违规求助? 4645567
关于积分的说明 14675591
捐赠科研通 4586746
什么是DOI,文献DOI怎么找? 2516526
邀请新用户注册赠送积分活动 1490130
关于科研通互助平台的介绍 1460963