Flow field reconstruction from sparse sensor measurements with physics-informed neural networks

物理 人工神经网络 流量(数学) 领域(数学) 统计物理学 机械 人工智能 数学 计算机科学 纯数学
作者
M. Hosseini,Yousef Shiri
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:36 (7) 被引量:3
标识
DOI:10.1063/5.0211680
摘要

In the realm of experimental fluid mechanics, accurately reconstructing high-resolution flow fields is notably challenging due to often sparse and incomplete data across time and space domains. This is exacerbated by the limitations of current experimental tools and methods, which leave critical areas without measurable data. This research suggests a feasible solution to this problem by employing an inverse physics-informed neural network (PINN) to merge available sparse data with physical laws. The method's efficacy is demonstrated using flow around a cylinder as a case study, with three distinct training sets. One was the sparse velocity data from a domain, and the other two datasets were limited velocity data obtained from the domain boundaries and sensors around the cylinder wall. The coefficient of determination (R2) coefficient and mean squared error (RMSE) metrics, indicative of model performance, have been determined for the velocity components of all models. For the 28 sensors model, the R2 value stands at 0.996 with an associated RMSE of 0.0251 for the u component, while for the v component, the R2 value registers at 0.969, accompanied by an RMSE of 0.0169. The outcomes indicate that the method can successfully recreate the actual velocity field with considerable precision with more than 28 sensors around the cylinder, highlighting PINN's potential as an effective data assimilation technique for experimental fluid mechanics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
瑶一瑶发布了新的文献求助10
刚刚
yhy完成签到,获得积分10
刚刚
纯真雁菱完成签到,获得积分10
刚刚
sun发布了新的文献求助10
刚刚
w.h完成签到,获得积分10
1秒前
1秒前
Schmoo发布了新的文献求助10
1秒前
赘婿应助Zxc采纳,获得10
1秒前
明理雨筠完成签到,获得积分10
2秒前
Ava应助Chen采纳,获得10
3秒前
3秒前
3秒前
Xing发布了新的文献求助10
3秒前
w.h发布了新的文献求助10
4秒前
搜集达人应助狼来了aas采纳,获得10
5秒前
6秒前
点点发布了新的文献求助10
6秒前
8秒前
8秒前
blingbling完成签到,获得积分10
8秒前
8秒前
黄啊涛发布了新的文献求助10
8秒前
8秒前
嘻嘻发布了新的文献求助30
8秒前
9秒前
9秒前
12秒前
12秒前
科研123发布了新的文献求助10
12秒前
Rainbow发布了新的文献求助10
12秒前
12秒前
米花完成签到 ,获得积分10
12秒前
凝子老师发布了新的文献求助10
13秒前
flying蝈蝈完成签到,获得积分10
13秒前
Rein完成签到,获得积分10
13秒前
13秒前
Zxc发布了新的文献求助10
13秒前
nininidoc完成签到,获得积分10
14秒前
123号发布了新的文献求助10
16秒前
Chen发布了新的文献求助10
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849