Research on the co-evolution of temporal networks structure and public opinion propagation

舆论 过程(计算) 范围(计算机科学) 计算机科学 意见领导 数据科学 政治学 公共关系 法学 政治 操作系统 程序设计语言
作者
Jiakun Wang,Hao Yu,Yun Li
出处
期刊:Journal of Information Science [SAGE]
卷期号:: 016555152211219-016555152211219 被引量:1
标识
DOI:10.1177/01655515221121944
摘要

Under the new media environment, social platforms, as the carrier of information propagation, have shown a drastic change in their form and structure, endowing public opinion with unique propagation characteristics. In view of this, considering the dynamic changes of online social network (OSN) structure, this article intends to analyse the spreading mechanism of public opinion in temporal networks and improve the applicability of public opinion governance strategies. Combing the changes of OSN topology with the classical susceptible–infected–recovered (SIR) dynamics model, we constructed a co-evolution model of temporal networks structure and public opinion propagation, and the propagation threshold of public opinion was derived with the help of Markov process. Then, the propagation characteristics of public opinion in temporal networks and their co-evolution process under different factors were discussed through simulation experiments. The results show that the propagation of public opinion in temporal networks has faster speed and wider scope compared with that in static networks; netizens’ social activity has a phased impact on the evolution process of public opinion and with its significant heterogeneity, the propagation of public opinion is gradually suppressed; compared with [Formula: see text], the evolution process of public opinion in temporal networks is more sensitive to the state change of public opinion [Formula: see text]. Our research can further enrich the theoretical research system of network science and information science and also provide a certain decision-making reference for the regulators to reasonably govern the propagation of public opinion in social platforms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
安静的雨完成签到,获得积分10
刚刚
1秒前
1秒前
liu完成签到,获得积分10
1秒前
1秒前
神麒小雪完成签到,获得积分10
1秒前
苹果酸奶发布了新的文献求助10
1秒前
2秒前
粥粥完成签到 ,获得积分10
2秒前
小离发布了新的文献求助30
3秒前
4秒前
nk完成签到 ,获得积分10
4秒前
kkk完成签到 ,获得积分10
4秒前
韭菜发布了新的文献求助10
4秒前
KSGGS发布了新的文献求助30
5秒前
李爱国应助tanjianxin采纳,获得10
5秒前
5秒前
5秒前
柚子发布了新的文献求助10
6秒前
6秒前
6秒前
SciGPT应助小可采纳,获得10
6秒前
7秒前
7秒前
Akim应助若狂采纳,获得10
7秒前
Owen应助困困咪采纳,获得10
7秒前
7秒前
大雁完成签到 ,获得积分10
8秒前
就这样完成签到 ,获得积分10
8秒前
nn发布了新的文献求助10
8秒前
manan发布了新的文献求助10
8秒前
8秒前
8秒前
落落发布了新的文献求助10
8秒前
ssss完成签到,获得积分10
9秒前
余红发布了新的文献求助10
9秒前
jackcy完成签到 ,获得积分10
9秒前
成都完成签到,获得积分20
9秒前
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759