Research on the co-evolution of temporal networks structure and public opinion propagation

舆论 过程(计算) 范围(计算机科学) 计算机科学 意见领导 数据科学 政治学 公共关系 法学 政治 操作系统 程序设计语言
作者
Jiakun Wang,Hao Yu,Yun Li
出处
期刊:Journal of Information Science [SAGE Publishing]
卷期号:: 016555152211219-016555152211219 被引量:1
标识
DOI:10.1177/01655515221121944
摘要

Under the new media environment, social platforms, as the carrier of information propagation, have shown a drastic change in their form and structure, endowing public opinion with unique propagation characteristics. In view of this, considering the dynamic changes of online social network (OSN) structure, this article intends to analyse the spreading mechanism of public opinion in temporal networks and improve the applicability of public opinion governance strategies. Combing the changes of OSN topology with the classical susceptible–infected–recovered (SIR) dynamics model, we constructed a co-evolution model of temporal networks structure and public opinion propagation, and the propagation threshold of public opinion was derived with the help of Markov process. Then, the propagation characteristics of public opinion in temporal networks and their co-evolution process under different factors were discussed through simulation experiments. The results show that the propagation of public opinion in temporal networks has faster speed and wider scope compared with that in static networks; netizens’ social activity has a phased impact on the evolution process of public opinion and with its significant heterogeneity, the propagation of public opinion is gradually suppressed; compared with [Formula: see text], the evolution process of public opinion in temporal networks is more sensitive to the state change of public opinion [Formula: see text]. Our research can further enrich the theoretical research system of network science and information science and also provide a certain decision-making reference for the regulators to reasonably govern the propagation of public opinion in social platforms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiaoguoxiaoguo完成签到,获得积分10
1秒前
1秒前
3秒前
UD发布了新的文献求助10
3秒前
WWYYXX发布了新的文献求助10
3秒前
3秒前
Zenia应助金志铭采纳,获得10
3秒前
有钱发布了新的文献求助10
4秒前
单檀檀发布了新的文献求助10
4秒前
木易发布了新的文献求助10
4秒前
斯文败类应助KingTiger采纳,获得10
5秒前
6秒前
田様应助王里走采纳,获得10
7秒前
8秒前
liike发布了新的文献求助10
8秒前
蓦然发布了新的文献求助10
9秒前
9秒前
10秒前
可可完成签到 ,获得积分10
10秒前
只只完成签到 ,获得积分10
10秒前
单檀檀完成签到,获得积分10
11秒前
12秒前
123发布了新的文献求助10
13秒前
尚欣雨发布了新的文献求助20
13秒前
啦啦啦啦完成签到,获得积分10
14秒前
orixero应助LiShin采纳,获得10
14秒前
shama完成签到,获得积分10
15秒前
yingying发布了新的文献求助20
17秒前
17秒前
17秒前
可靠的初雪完成签到,获得积分10
17秒前
天天快乐应助陈秋迎采纳,获得10
19秒前
浮游应助shama采纳,获得10
20秒前
21秒前
Fighter完成签到,获得积分10
21秒前
Momomo完成签到 ,获得积分10
21秒前
科研通AI6应助Minzy采纳,获得10
22秒前
22秒前
子清1987完成签到,获得积分10
23秒前
TK完成签到,获得积分10
24秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5226542
求助须知:如何正确求助?哪些是违规求助? 4398011
关于积分的说明 13688099
捐赠科研通 4262554
什么是DOI,文献DOI怎么找? 2339214
邀请新用户注册赠送积分活动 1336581
关于科研通互助平台的介绍 1292603