Rational design and fabrication of electrocatalysts from the perspective of mass transfer and electronic structure is highly desirable for hydrogen evolution reaction (HER). Herein, a hierarchical and self-supported electrode comprising Cu nanowires, NiFe nanosheets, and Pt3Ir alloy nanoparticles (Cu [email protected]3Ir) was in situ constructed and established as a highly active and robust electrocatalyst for HER with industrial current densities. Benefiting from the hierarchical structure, abundant active sites, and positive electronic interaction between NiFe and Pt3Ir, the Cu [email protected]3Ir electrode shows extremely low overpotentials of 210 and 239 mV to reach industrial current densities of 500 and 1000 mA cm−2 in 1.0 M KOH solution, respectively. More importantly, Cu [email protected]3Ir electrode shows robust durability with a slight increment of 8 mV for the required potential after consecutive tests for 7 days under 500 mA cm−2. As further revealed by electrochemical and theoretical studies, the reaction kinetics of NiFe is greatly promoted by coupling with Pt3Ir, and the d-band center energy level of Pt 5d orbital is lowered by Ir atom, which not only facilitates the electron consumption at the electrode/electrolyte interface but also optimizes the energies for H adsorption and H2 desorption. This work provides valuable insights into the construction of self-supported electrodes with extraordinary activity and durability for industrial applications.