亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Construction of a diagnostic classifier for cervical intraepithelial neoplasia and cervical cancer based on XGBoost feature selection and random forest model

随机森林 小桶 分类器(UML) 宫颈上皮内瘤变 宫颈癌 特征选择 降维 基因 计算生物学 人工智能 医学 基因表达 生物 遗传学 计算机科学 癌症 基因本体论
作者
Jing Zhang,Xiuqing Yang,Jia Chen,Jing Han,Xiaofeng Chen,Yun Fan,Hui Zheng
出处
期刊:Journal of Obstetrics and Gynaecology Research [Wiley]
卷期号:49 (1): 296-303 被引量:1
标识
DOI:10.1111/jog.15458
摘要

The pathological phenotype of early-stage cervical cancer (CC) is similar to that of cervical intraepithelial neoplasia (CIN), which provides a challenge for the diagnosis of cervical precancerous lesions. Meanwhile, the existing diagnostic methods have certain subjectivity and limitations, resulting in the possibility of misdiagnosis or missed diagnosis. Hence, some methods are needed to assist diagnosis of CC and CIN.Based on the data of CIN and CC in gene expression omnibus (GEO) dataset, the eXtreme Gradient Boosting (XGBoost) algorithm was used to screen the feature genes between CIN and CC for constructing the classifier. Incremental feature selection (IFS) curve was also used for screening. The classifier was validated for reliability using principal component analysis (PCA) dimensionality reduction analysis and heat map analysis of gene expression. Then, differentially expressed genes of CIN and CC were intersected with the classifier genes. Genes in the intersection were used as seeds for protein-protein interaction network construction and restart random walk analysis. And the genes with the top 50 affinity coefficients were selected for gene ontology (GO) and kyoto encyclopedia of genes and genome (KEGG) enrichment analyses to observe the biological functions with differences between CIN and CC.The peripheral blood genes of CIN and CC were analyzed, and seven genes were screened. Using this gene for classifier construction, IFS curve screening revealed that the three-feature gene classifier constructed according to the random forest model had the best effect. The results of PCA dimensionality reduction analysis and gene expression heat map analysis showed that the three-gene classifier could effectively distinguish CIN from CC.A three-gene diagnostic classifier can effectively distinguish CIN patients from CC patients and provide a reference for the clinical diagnosis of early CC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
再给我来点抽象的应助Jim采纳,获得10
23秒前
科研通AI5应助榆果子采纳,获得10
44秒前
fufufu123完成签到 ,获得积分10
1分钟前
孙孙应助Jim采纳,获得30
1分钟前
充电宝应助EliotFang采纳,获得10
2分钟前
2分钟前
陈杰发布了新的文献求助10
2分钟前
kuoping完成签到,获得积分0
2分钟前
彭于晏应助科研通管家采纳,获得10
2分钟前
nickel完成签到,获得积分10
3分钟前
3分钟前
EliotFang发布了新的文献求助10
3分钟前
沉沉完成签到 ,获得积分0
3分钟前
4分钟前
4分钟前
Frank发布了新的文献求助10
4分钟前
oleskarabach发布了新的文献求助10
4分钟前
EliotFang完成签到,获得积分10
4分钟前
fsznc完成签到 ,获得积分0
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
oleskarabach发布了新的文献求助10
5分钟前
CipherSage应助科研通管家采纳,获得10
6分钟前
开心完成签到 ,获得积分10
7分钟前
7分钟前
顾矜应助zsc采纳,获得10
7分钟前
榆果子发布了新的文献求助10
7分钟前
榆果子完成签到,获得积分10
7分钟前
我是笨蛋完成签到 ,获得积分10
7分钟前
8分钟前
8分钟前
荆棘鸟发布了新的文献求助10
8分钟前
正传阿飞完成签到,获得积分10
8分钟前
隐形曼青应助荆棘鸟采纳,获得10
8分钟前
荆棘鸟完成签到,获得积分10
8分钟前
8分钟前
Frank完成签到,获得积分10
9分钟前
鲤鱼听荷完成签到 ,获得积分10
10分钟前
10分钟前
tabblk发布了新的文献求助10
10分钟前
赘婿应助科研通管家采纳,获得10
10分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4582372
求助须知:如何正确求助?哪些是违规求助? 4000106
关于积分的说明 12382171
捐赠科研通 3675045
什么是DOI,文献DOI怎么找? 2025670
邀请新用户注册赠送积分活动 1059319
科研通“疑难数据库(出版商)”最低求助积分说明 945976