亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Construction of a diagnostic classifier for cervical intraepithelial neoplasia and cervical cancer based on XGBoost feature selection and random forest model

随机森林 小桶 分类器(UML) 宫颈上皮内瘤变 宫颈癌 特征选择 降维 基因 计算生物学 人工智能 医学 基因表达 生物 遗传学 计算机科学 癌症 基因本体论
作者
Jing Zhang,Xiuqing Yang,Jia Chen,Jing Han,Xiaofeng Chen,Yun Fan,Hui Zheng
出处
期刊:Journal of Obstetrics and Gynaecology Research [Wiley]
卷期号:49 (1): 296-303 被引量:1
标识
DOI:10.1111/jog.15458
摘要

The pathological phenotype of early-stage cervical cancer (CC) is similar to that of cervical intraepithelial neoplasia (CIN), which provides a challenge for the diagnosis of cervical precancerous lesions. Meanwhile, the existing diagnostic methods have certain subjectivity and limitations, resulting in the possibility of misdiagnosis or missed diagnosis. Hence, some methods are needed to assist diagnosis of CC and CIN.Based on the data of CIN and CC in gene expression omnibus (GEO) dataset, the eXtreme Gradient Boosting (XGBoost) algorithm was used to screen the feature genes between CIN and CC for constructing the classifier. Incremental feature selection (IFS) curve was also used for screening. The classifier was validated for reliability using principal component analysis (PCA) dimensionality reduction analysis and heat map analysis of gene expression. Then, differentially expressed genes of CIN and CC were intersected with the classifier genes. Genes in the intersection were used as seeds for protein-protein interaction network construction and restart random walk analysis. And the genes with the top 50 affinity coefficients were selected for gene ontology (GO) and kyoto encyclopedia of genes and genome (KEGG) enrichment analyses to observe the biological functions with differences between CIN and CC.The peripheral blood genes of CIN and CC were analyzed, and seven genes were screened. Using this gene for classifier construction, IFS curve screening revealed that the three-feature gene classifier constructed according to the random forest model had the best effect. The results of PCA dimensionality reduction analysis and gene expression heat map analysis showed that the three-gene classifier could effectively distinguish CIN from CC.A three-gene diagnostic classifier can effectively distinguish CIN patients from CC patients and provide a reference for the clinical diagnosis of early CC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
5秒前
23秒前
汉堡包应助Developing_human采纳,获得10
29秒前
31秒前
39秒前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
暴躁的奇异果完成签到,获得积分10
2分钟前
2分钟前
领导范儿应助Ming采纳,获得10
3分钟前
3分钟前
3分钟前
CodeCraft应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
George发布了新的文献求助10
4分钟前
4分钟前
Ming发布了新的文献求助10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
Enso完成签到 ,获得积分10
5分钟前
5分钟前
量子星尘发布了新的文献求助10
5分钟前
5分钟前
阿里给阿里的求助进行了留言
5分钟前
小透明发布了新的文献求助10
5分钟前
6分钟前
SUNny发布了新的文献求助10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664501
求助须知:如何正确求助?哪些是违规求助? 4863056
关于积分的说明 15107857
捐赠科研通 4823130
什么是DOI,文献DOI怎么找? 2581958
邀请新用户注册赠送积分活动 1536065
关于科研通互助平台的介绍 1494491