清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Construction of a diagnostic classifier for cervical intraepithelial neoplasia and cervical cancer based on XGBoost feature selection and random forest model

随机森林 小桶 分类器(UML) 宫颈上皮内瘤变 宫颈癌 特征选择 降维 基因 计算生物学 人工智能 医学 基因表达 生物 遗传学 计算机科学 癌症 基因本体论
作者
Jing Zhang,Xiuqing Yang,Jia Chen,Jing Han,Xiaofeng Chen,Yun Fan,Hui Zheng
出处
期刊:Journal of Obstetrics and Gynaecology Research [Wiley]
卷期号:49 (1): 296-303 被引量:1
标识
DOI:10.1111/jog.15458
摘要

The pathological phenotype of early-stage cervical cancer (CC) is similar to that of cervical intraepithelial neoplasia (CIN), which provides a challenge for the diagnosis of cervical precancerous lesions. Meanwhile, the existing diagnostic methods have certain subjectivity and limitations, resulting in the possibility of misdiagnosis or missed diagnosis. Hence, some methods are needed to assist diagnosis of CC and CIN.Based on the data of CIN and CC in gene expression omnibus (GEO) dataset, the eXtreme Gradient Boosting (XGBoost) algorithm was used to screen the feature genes between CIN and CC for constructing the classifier. Incremental feature selection (IFS) curve was also used for screening. The classifier was validated for reliability using principal component analysis (PCA) dimensionality reduction analysis and heat map analysis of gene expression. Then, differentially expressed genes of CIN and CC were intersected with the classifier genes. Genes in the intersection were used as seeds for protein-protein interaction network construction and restart random walk analysis. And the genes with the top 50 affinity coefficients were selected for gene ontology (GO) and kyoto encyclopedia of genes and genome (KEGG) enrichment analyses to observe the biological functions with differences between CIN and CC.The peripheral blood genes of CIN and CC were analyzed, and seven genes were screened. Using this gene for classifier construction, IFS curve screening revealed that the three-feature gene classifier constructed according to the random forest model had the best effect. The results of PCA dimensionality reduction analysis and gene expression heat map analysis showed that the three-gene classifier could effectively distinguish CIN from CC.A three-gene diagnostic classifier can effectively distinguish CIN patients from CC patients and provide a reference for the clinical diagnosis of early CC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
20秒前
莨菪发布了新的文献求助10
21秒前
tt完成签到,获得积分10
30秒前
斯文的清涟完成签到,获得积分10
45秒前
51秒前
盈盈发布了新的文献求助10
57秒前
量子星尘发布了新的文献求助10
1分钟前
安东尼奥完成签到 ,获得积分10
1分钟前
狂野丹翠应助科研通管家采纳,获得10
1分钟前
持卿应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
持卿应助科研通管家采纳,获得10
1分钟前
持卿应助科研通管家采纳,获得10
1分钟前
持卿应助科研通管家采纳,获得10
1分钟前
我是老大应助莨菪采纳,获得10
1分钟前
CipherSage应助milu采纳,获得20
1分钟前
1分钟前
1分钟前
老马哥完成签到 ,获得积分0
2分钟前
大医仁心完成签到 ,获得积分10
2分钟前
CipherSage应助Penny采纳,获得10
2分钟前
2分钟前
Penny完成签到,获得积分10
2分钟前
Penny发布了新的文献求助10
2分钟前
盈盈发布了新的文献求助10
2分钟前
woxinyouyou完成签到,获得积分0
3分钟前
meeteryu完成签到,获得积分10
3分钟前
SciGPT应助盈盈采纳,获得10
3分钟前
持卿应助科研通管家采纳,获得10
3分钟前
持卿应助科研通管家采纳,获得10
3分钟前
持卿应助科研通管家采纳,获得10
3分钟前
持卿应助科研通管家采纳,获得10
3分钟前
狂野丹翠应助科研通管家采纳,获得10
3分钟前
Wone3完成签到 ,获得积分10
3分钟前
knight7m完成签到 ,获得积分10
3分钟前
哈哈完成签到 ,获得积分10
3分钟前
Alisha完成签到,获得积分10
3分钟前
4分钟前
4分钟前
jjy发布了新的文献求助30
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5715020
求助须知:如何正确求助?哪些是违规求助? 5229427
关于积分的说明 15273979
捐赠科研通 4866106
什么是DOI,文献DOI怎么找? 2612683
邀请新用户注册赠送积分活动 1562893
关于科研通互助平台的介绍 1520160