Revealing the Mechanism of sp‐N Doping in Graphdiyne for Developing Site‐Defined Metal‐Free Catalysts

兴奋剂 催化作用 材料科学 金属 碳纤维 纳米技术 分子 化学工程 光电子学 化学 有机化学 复合材料 冶金 复合数 工程类
作者
Baokun Liu,Shuhui Zhan,Jiang Du,Xin Yang,Yasong Zhao,Lulu Li,Jiawei Wan,Zhi‐Jian Zhao,Jinlong Gong,Nailiang Yang,Ranbo Yu,Dan Wang
出处
期刊:Advanced Materials [Wiley]
卷期号:35 (50) 被引量:26
标识
DOI:10.1002/adma.202206450
摘要

Abstract Due to the limited reserves of metals, scientists are devoted to exploring high‐performance metal‐free catalysts based on carbon materials to solve environment‐related issues. Doping would build up inhomogeneous charge distribution on surface, which is an efficient approach for boosting the catalytic performance. However, doping sites are difficult to control in traditional carbon materials, thus hindering their development. Taking the advantage of unique sp‐C in graphdiyne (GDY), a new N doping configuration of sp‐hybridized nitrogen (sp‐N), bringing a Pt‐comparable catalytic activity in oxygen reduction reaction is site‐defined introduced. However, the reaction intermediate of this process is never captured, hindering the understanding of the mechanism and the precise synthesis of metal‐free catalysts. After the four‐year study, the fabrication of intermediate‐like molecule is realized, and finally sp‐N doped GDY via the pericyclic reaction is obtained. Compared with GDY doped with other N configurations, the designed sp‐N GDY shows much higher catalytic activity in electroreduction of CO 2 toward CH 4 production, owing to the unique electronic structure introduced by sp‐N, which is more favorable in stabilizing the intermediate. Thus, besides opening the black‐box for the site‐defined doping, this work reveals the relationship between doping configuration and products of CO 2 reduction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
MEME发布了新的文献求助10
3秒前
3秒前
情怀应助LSH970829采纳,获得10
3秒前
CHINA_C13发布了新的文献求助10
6秒前
Mars发布了新的文献求助10
7秒前
哈哈哈完成签到,获得积分10
7秒前
玛卡巴卡应助平常的毛豆采纳,获得100
8秒前
默默的青旋完成签到,获得积分10
9秒前
12秒前
搜集达人应助淡淡采白采纳,获得10
12秒前
高高代珊完成签到 ,获得积分10
13秒前
gmc发布了新的文献求助10
14秒前
14秒前
15秒前
善学以致用应助Mian采纳,获得10
15秒前
学科共进发布了新的文献求助60
16秒前
LWJ完成签到 ,获得积分10
16秒前
16秒前
缓慢的糖豆完成签到,获得积分10
17秒前
阉太狼完成签到,获得积分10
17秒前
18秒前
soory完成签到,获得积分10
19秒前
任性的傲柏完成签到,获得积分10
19秒前
lwk205完成签到,获得积分0
19秒前
20秒前
一一完成签到,获得积分10
20秒前
20秒前
20秒前
高中生完成签到,获得积分10
21秒前
21秒前
21秒前
希望天下0贩的0应助TT采纳,获得10
22秒前
xxegt完成签到 ,获得积分10
22秒前
23秒前
爱吃泡芙发布了新的文献求助10
23秒前
susu完成签到,获得积分10
25秒前
会神发布了新的文献求助10
25秒前
KK完成签到,获得积分10
26秒前
充电宝应助justin采纳,获得10
28秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824