兴奋剂
催化作用
材料科学
金属
碳纤维
纳米技术
分子
化学工程
光电子学
化学
有机化学
复合材料
冶金
复合数
工程类
作者
Baokun Liu,Shuhui Zhan,Jiang Du,Xin Yang,Yasong Zhao,Lulu Li,Jiawei Wan,Zhi‐Jian Zhao,Jinlong Gong,Nailiang Yang,Ranbo Yu,Dan Wang
标识
DOI:10.1002/adma.202206450
摘要
Abstract Due to the limited reserves of metals, scientists are devoted to exploring high‐performance metal‐free catalysts based on carbon materials to solve environment‐related issues. Doping would build up inhomogeneous charge distribution on surface, which is an efficient approach for boosting the catalytic performance. However, doping sites are difficult to control in traditional carbon materials, thus hindering their development. Taking the advantage of unique sp‐C in graphdiyne (GDY), a new N doping configuration of sp‐hybridized nitrogen (sp‐N), bringing a Pt‐comparable catalytic activity in oxygen reduction reaction is site‐defined introduced. However, the reaction intermediate of this process is never captured, hindering the understanding of the mechanism and the precise synthesis of metal‐free catalysts. After the four‐year study, the fabrication of intermediate‐like molecule is realized, and finally sp‐N doped GDY via the pericyclic reaction is obtained. Compared with GDY doped with other N configurations, the designed sp‐N GDY shows much higher catalytic activity in electroreduction of CO 2 toward CH 4 production, owing to the unique electronic structure introduced by sp‐N, which is more favorable in stabilizing the intermediate. Thus, besides opening the black‐box for the site‐defined doping, this work reveals the relationship between doping configuration and products of CO 2 reduction.
科研通智能强力驱动
Strongly Powered by AbleSci AI