UAV Trajectory Prediction Based on Flight State Recognition

弹道 计算机科学 人工智能 卡尔曼滤波器 人工神经网络 飞行模拟器 状态向量 国家(计算机科学) 预处理器 模拟 算法 物理 经典力学 天文
作者
Jiandong Zhang,Zhuoyong Shi,Anli Zhang,Qiming Yang,Guoqing Shi,Yong Wu
出处
期刊:IEEE Transactions on Aerospace and Electronic Systems [Institute of Electrical and Electronics Engineers]
卷期号:60 (3): 2629-2641 被引量:26
标识
DOI:10.1109/taes.2023.3303854
摘要

UAV trajectory prediction is the core technology for autonomous UAV flight and is a prerequisite for control and navigation. In this paper, the UAV flight path prediction model is established by collecting the flight data of the actual UAV. Firstly, the UAV flight information collection and data preprocessing are carried out; Secondly, the UAV flight state recognition model is established based on the PCA-SVM model to identify five UAV flight states; Finally, the flight path prediction model of UAV based on flight state recognition is established, and the neural network model is established based on the flight path of five flight state recognition. The experimental results show that: 1) The accuracy of UAV flight state recognition based on PCA-SVM is more than 90%. 2) The average prediction error of the traditional neural network UAV trajectory is 0.422m, and the maximum error of the circling state is 0.84m. 3) The average prediction error of the UAV flight path based on flight state recognition is 0.214m, and the maximum error of the circling state is 0.41m. The model error is less than 0.5m. The results show that the prediction model with flight state recognition has significantly less error than the direct UAV trajectory prediction, and the prediction model with flight state recognition predicts better than the traditional Unscented Kalman Filter method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bcq发布了新的文献求助10
刚刚
Zoe完成签到,获得积分10
1秒前
1秒前
2秒前
2秒前
2秒前
2秒前
2秒前
大意的淇发布了新的文献求助10
3秒前
铃兰发布了新的文献求助10
3秒前
3秒前
4秒前
QZWX发布了新的文献求助30
4秒前
ri_290完成签到,获得积分10
4秒前
4秒前
蓝天发布了新的文献求助10
5秒前
5秒前
小文子发布了新的文献求助10
5秒前
xiaoshi完成签到,获得积分10
5秒前
LCC完成签到 ,获得积分10
5秒前
yinghan完成签到,获得积分20
5秒前
5秒前
hongxian发布了新的文献求助10
6秒前
linkman发布了新的文献求助200
6秒前
6秒前
zch19970203完成签到,获得积分10
6秒前
Na2CO3发布了新的文献求助30
7秒前
量子星尘发布了新的文献求助10
7秒前
李健应助文右三采纳,获得10
8秒前
sota发布了新的文献求助10
8秒前
科研通AI6应助汤柏钧采纳,获得10
8秒前
8秒前
热情孤丹发布了新的文献求助10
8秒前
orixero应助于鱼采纳,获得10
9秒前
9秒前
9秒前
baixue发布了新的文献求助10
10秒前
11秒前
crush完成签到,获得积分10
11秒前
ergatoid发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646235
求助须知:如何正确求助?哪些是违规求助? 4770584
关于积分的说明 15033924
捐赠科研通 4804968
什么是DOI,文献DOI怎么找? 2569335
邀请新用户注册赠送积分活动 1526419
关于科研通互助平台的介绍 1485810