Research on depth control of machining trace in electrochemical trepanning

机械加工 阴极 GSM演进的增强数据速率 电化学加工 材料科学 电场 电火花加工 跟踪(心理语言学) 平坦度(宇宙学) 机械工程 复合材料 电极 计算机科学 工程类 冶金 电气工程 化学 物理 电解质 物理化学 哲学 电信 量子力学 语言学 宇宙学
作者
Zhengyin Li,Dong Zhu,Xiaobo Zhang,Lin Jiahao
出处
期刊:Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture [SAGE]
卷期号:238 (8): 1172-1182
标识
DOI:10.1177/09544054231189304
摘要

Electrochemical trepanning (ECTr) is a highly effective and economic manufacturing technology for machining difficult-to-cut metal materials that are often used in aeroengine components. Integral structural components such as blisks, diffusers, etc. are composed of hubs and blades. In continuous ECTr, machining trace stems from on the hub between adjacent blades. The depth of machining trace significantly influences the surface integrity of the integrated components, even causes the scrapping of the workpiece. In order to solve the problem of machining trace in ECTr, a cathode design method based on the relation between cathode profile and electric field distribution is proposed in this study, the edge of the cathode that affects the machining trace is chamfered. A electric field model of ECTr is established and dynamic electric field simulation of ECTr for cathodes with different chamfered edges is performed. The electric field intensity distribution at the cathode edge and the forming profile of the hub are compared. The simulation results show that optimal chamfering parameters can improve the machining trace. Subsequently, a group of cathodes with different chamfered edge is designed, and corresponding ECTr experiments are conducted. The optimal chamfering parameters are determined (α = 5°, b = 2 mm), the depth of the machining trace is reduced from 0.370 mm to 0.122 mm, the surface flatness is significantly improved. Overall, this depth control method of machining trace is verified effectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助Khr1stINK采纳,获得10
刚刚
爆米花应助甜筒采纳,获得10
刚刚
Gang完成签到,获得积分10
刚刚
调研昵称发布了新的文献求助10
1秒前
Hello应助潇洒的青采纳,获得10
1秒前
1秒前
共享精神应助长孙归尘采纳,获得10
1秒前
2秒前
Evan123发布了新的文献求助10
2秒前
3秒前
xctdyl1992发布了新的文献求助10
3秒前
3秒前
Su完成签到,获得积分10
3秒前
俗丨完成签到,获得积分10
4秒前
科研通AI5应助海底落日采纳,获得30
4秒前
4秒前
CodeCraft应助纯真忆安采纳,获得10
4秒前
顺顺发布了新的文献求助10
4秒前
4秒前
5秒前
nan完成签到,获得积分10
5秒前
5秒前
自信的叫兽完成签到,获得积分10
5秒前
淡然老太完成签到,获得积分10
6秒前
6秒前
哟哟哟完成签到,获得积分10
7秒前
思源应助背后的机器猫采纳,获得10
7秒前
惠惠发布了新的文献求助10
7秒前
AFEUWOS01完成签到,获得积分20
8秒前
冷傲的樱桃完成签到,获得积分10
8秒前
fighting发布了新的文献求助10
8秒前
zxw发布了新的文献求助10
9秒前
赵赵赵完成签到,获得积分10
9秒前
10秒前
10秒前
10秒前
唐人雄完成签到,获得积分10
10秒前
xctdyl1992完成签到,获得积分20
10秒前
10秒前
丰知然应助周凡淇采纳,获得10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794