清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Clever Nanomaterials Fabrication Techniques Encounter Sustainable C1 Catalysis

催化作用 化学 多相催化 纳米技术 协同催化 组合化学 材料科学 有机化学
作者
Yang Wang,Jian Sun,Noritatsu Tsubaki
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:56 (17): 2341-2353 被引量:8
标识
DOI:10.1021/acs.accounts.3c00311
摘要

ConspectusC1 catalysis, which refers to the conversion of molecules with a single carbon atom, such as CO, CO2, and CH4, into clean fuels and basic building blocks for chemical industries, has built a bridge between carbon resource utilization and valuable chemical supply. With respect to the goal of carbon neutrality, C1 catalysis also plays an essential role owing to its integrated functions in the green catalytic process with fewer CO2 emissions and even direct high-value-added utilization of greenhouse gases (CO2 and CH4). However, the inert nature of the C–O or C–H bond in C1 molecules as well as uncontrollable C–C coupling render C1 catalysis challenging. The rational design of highly active catalytic materials (denoted as C1 catalysts) with strong capacities for C–O or C–H bond activation and C–C coupling by convenient nanomaterials fabrication methods to boost the catalytic performance of C1 molecule conversion, including targeted product selectivity and long-term stability, is the cornerstone of C1 catalysis.Notably, the familiar concepts in heterogeneous catalysis, such as tandem catalysis and confinement catalysis, are applicable for C1 catalysis and have been successfully used to design a C1 catalyst. Regarding the tandem catalysis concept that integrates multiple reactions in a single-pass via a bi- or multifunctional catalyst, it is promising to shed new light on the oriented conversion of C1 molecules, especially for C2+ hydrocarbon or oxygenate synthesis. The confinement effect is powerful for controlling the product distribution and enhancing activation efficiency of inert chemical bonds in C1 catalysis due to the unique reactants/intermediate adsorption and evolution behaviors on the confined catalytic interface with a special electronic environment. Moreover, metal–support interactions (MSIs), electronic properties of the active site, and catalytic engineering issues are also susceptible to the C1 molecule conversion performance. Therefore, under the guidance of basic and novel rules in heterogeneous catalysis, the innovation of catalytic materials with the aid of advanced catalytic materials fabrication techniques has always been a hot research topic in C1 catalysis.In this Account, we briefly describe the challenges in thermal–catalytic C1 molecule (mainly CO, CO2, and CH4) conversion. At the same time, the synergistic functioning of the physicochemical properties of the catalytic materials on the performance in C1 molecule conversion is highlighted. More importantly, we summarize our progress in rationally designing tailor-made C1 catalysts to enhance C1 molecule activation efficiency and targeted product selectivity via powerful nanomaterials fabrication techniques, such as traditional wet-chemistry strategies, the magnetron sputtering method, and 3D printing technology. Specifically, the ingenious capsule catalyst and ammonia pools in zeolites fabricated by a wet chemistry process possess an extraordinary effect on the transformation of CO, CO2, and CH4 molecules. Also, the sputtering method is reliable in modulating the electronic properties of metallic active sites for C1 molecule conversion, thereby tailoring the final product selectivity. Furthermore, we showcase the strong capability of metal 3D printing technology in fabricating a self-catalytic reactor, by which the functions of the reaction field and nanoscale active sites are well integrated. Finally, we predict the future research opportunities in highly efficient C1 catalyst design with the assistance of clever nanomaterials fabrication techniques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
白天科室黑奴and晚上实验室牛马完成签到 ,获得积分10
刚刚
15秒前
renpp822发布了新的文献求助10
19秒前
wujiwuhui完成签到 ,获得积分10
23秒前
27秒前
hh0发布了新的文献求助10
45秒前
火星上惜天完成签到 ,获得积分10
45秒前
沉沉完成签到 ,获得积分0
56秒前
mashibeo完成签到,获得积分10
1分钟前
小小果妈完成签到 ,获得积分10
1分钟前
大乐完成签到 ,获得积分10
1分钟前
1分钟前
hh0发布了新的文献求助10
1分钟前
1分钟前
hh0发布了新的文献求助10
1分钟前
hh0发布了新的文献求助10
1分钟前
hh0发布了新的文献求助10
1分钟前
1分钟前
hh0发布了新的文献求助10
2分钟前
搞怪的白云完成签到 ,获得积分10
2分钟前
hh0发布了新的文献求助80
2分钟前
FashionBoy应助青梅采纳,获得20
2分钟前
hh0发布了新的文献求助150
2分钟前
2分钟前
hh0发布了新的文献求助10
2分钟前
2分钟前
hh0发布了新的文献求助30
2分钟前
青梅发布了新的文献求助20
2分钟前
红茸茸羊完成签到 ,获得积分10
2分钟前
hh0发布了新的文献求助10
2分钟前
浚稚完成签到 ,获得积分10
3分钟前
hh0发布了新的文献求助100
3分钟前
hh0发布了新的文献求助100
3分钟前
3分钟前
青梅发布了新的文献求助10
3分钟前
hh0发布了新的文献求助30
3分钟前
3分钟前
hh0发布了新的文献求助30
3分钟前
hh0发布了新的文献求助10
3分钟前
hh0发布了新的文献求助100
4分钟前
高分求助中
歯科矯正学 第7版(或第5版) 1004
The late Devonian Standard Conodont Zonation 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Zeitschrift für Orient-Archäologie 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3239003
求助须知:如何正确求助?哪些是违规求助? 2884295
关于积分的说明 8232922
捐赠科研通 2552338
什么是DOI,文献DOI怎么找? 1380690
科研通“疑难数据库(出版商)”最低求助积分说明 649071
邀请新用户注册赠送积分活动 624769