A radiomics-incorporated deep ensemble learning model for multi-parametric MRI-based glioma segmentation

人工智能 计算机科学 流体衰减反转恢复 分割 模式识别(心理学) 无线电技术 特征(语言学) 深度学习 Softmax函数 磁共振成像 降维 放射科 医学 语言学 哲学
作者
Yang Chen,Zhenyu Yang,Jingtong Zhao,Justus Adamson,Sheng Yang,F Yin,Chunhao Wang
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:68 (18): 185025-185025 被引量:2
标识
DOI:10.1088/1361-6560/acf10d
摘要

Objective.To develop a deep ensemble learning (DEL) model with radiomics spatial encoding execution for improved glioma segmentation accuracy using multi-parametric magnetic resonance imaging (mp-MRI).Approach.This model was developed using 369 glioma patients with a four-modality mp-MRI protocol: T1, contrast-enhanced T1 (T1-Ce), T2, and FLAIR. In each modality volume, a 3D sliding kernel was implemented across the brain to capture image heterogeneity: 56 radiomic features were extracted within the kernel, resulting in a fourth-order tensor. Each radiomic feature can then be encoded as a 3D image volume, namely a radiomic feature map (RFM). For each patient, all RFMs extracted from all four modalities were processed using principal component analysis for dimension reduction, and the first four principal components (PCs) were selected. Next, a DEL model comprised of four U-Net sub-models was trained for the segmentation of a region-of-interest: each sub-model utilizes the mp-MRI and one of the four PCs as a five-channel input for 2D execution. Last, four softmax probability results given by the DEL model were superimposed and binarized using Otsu's method as the segmentation results. Three DEL models were trained to segment the enhancing tumor (ET), tumor core (TC), and whole tumor (WT), respectively. The segmentation results given by the proposed ensemble were compared to the mp-MRI-only U-Net results.Main Results.All three radiomics-incorporated DEL models were successfully implemented: compared to the mp-MRI-only U-net results, the dice coefficients of ET (0.777 → 0.817), TC (0.742 → 0.757), and WT (0.823 → 0.854) demonstrated improvement. The accuracy, sensitivity, and specificity results demonstrated similar patterns.Significance.The adopted radiomics spatial encoding execution enriches the image heterogeneity information that leads to the successful demonstration of the proposed DEL model, which offers a new tool for mp-MRI-based medical image segmentation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Orange应助科研通管家采纳,获得10
刚刚
科研通AI2S应助科研通管家采纳,获得10
刚刚
Twonej应助科研通管家采纳,获得30
刚刚
无花果应助科研通管家采纳,获得10
刚刚
领导范儿应助科研通管家采纳,获得10
刚刚
CipherSage应助科研通管家采纳,获得10
刚刚
暴躁的信封完成签到,获得积分10
刚刚
Jasper应助科研通管家采纳,获得10
刚刚
共享精神应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
顾矜应助科研通管家采纳,获得10
1秒前
FashionBoy应助科研通管家采纳,获得10
1秒前
xzy998应助科研通管家采纳,获得10
1秒前
思源应助科研通管家采纳,获得10
1秒前
1秒前
Pull发布了新的文献求助10
1秒前
Twonej应助科研通管家采纳,获得30
1秒前
CipherSage应助科研通管家采纳,获得10
1秒前
今后应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
zzj完成签到,获得积分20
1秒前
思源应助科研通管家采纳,获得10
1秒前
酷波er应助科研通管家采纳,获得10
1秒前
今后应助科研通管家采纳,获得10
1秒前
Owen应助科研通管家采纳,获得10
1秒前
Akim应助minmin采纳,获得10
1秒前
酷波er应助科研通管家采纳,获得10
1秒前
顾矜应助科研通管家采纳,获得10
1秒前
Owen应助科研通管家采纳,获得10
2秒前
达达发布了新的文献求助10
2秒前
烟花应助科研通管家采纳,获得10
2秒前
2秒前
顾矜应助科研通管家采纳,获得10
2秒前
ding应助科研通管家采纳,获得10
2秒前
2秒前
烟花应助科研通管家采纳,获得10
2秒前
Ava应助科研通管家采纳,获得10
2秒前
ding应助科研通管家采纳,获得10
2秒前
慕青应助科研通管家采纳,获得10
2秒前
2秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5727674
求助须知:如何正确求助?哪些是违规求助? 5309608
关于积分的说明 15311894
捐赠科研通 4875130
什么是DOI,文献DOI怎么找? 2618553
邀请新用户注册赠送积分活动 1568241
关于科研通互助平台的介绍 1524919