亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A radiomics-incorporated deep ensemble learning model for multi-parametric MRI-based glioma segmentation

人工智能 计算机科学 流体衰减反转恢复 分割 模式识别(心理学) 无线电技术 特征(语言学) 深度学习 Softmax函数 磁共振成像 降维 放射科 医学 语言学 哲学
作者
Yang Chen,Zhenyu Yang,Jingtong Zhao,Justus Adamson,Sheng Yang,F Yin,Chunhao Wang
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:68 (18): 185025-185025 被引量:2
标识
DOI:10.1088/1361-6560/acf10d
摘要

Objective.To develop a deep ensemble learning (DEL) model with radiomics spatial encoding execution for improved glioma segmentation accuracy using multi-parametric magnetic resonance imaging (mp-MRI).Approach.This model was developed using 369 glioma patients with a four-modality mp-MRI protocol: T1, contrast-enhanced T1 (T1-Ce), T2, and FLAIR. In each modality volume, a 3D sliding kernel was implemented across the brain to capture image heterogeneity: 56 radiomic features were extracted within the kernel, resulting in a fourth-order tensor. Each radiomic feature can then be encoded as a 3D image volume, namely a radiomic feature map (RFM). For each patient, all RFMs extracted from all four modalities were processed using principal component analysis for dimension reduction, and the first four principal components (PCs) were selected. Next, a DEL model comprised of four U-Net sub-models was trained for the segmentation of a region-of-interest: each sub-model utilizes the mp-MRI and one of the four PCs as a five-channel input for 2D execution. Last, four softmax probability results given by the DEL model were superimposed and binarized using Otsu's method as the segmentation results. Three DEL models were trained to segment the enhancing tumor (ET), tumor core (TC), and whole tumor (WT), respectively. The segmentation results given by the proposed ensemble were compared to the mp-MRI-only U-Net results.Main Results.All three radiomics-incorporated DEL models were successfully implemented: compared to the mp-MRI-only U-net results, the dice coefficients of ET (0.777 → 0.817), TC (0.742 → 0.757), and WT (0.823 → 0.854) demonstrated improvement. The accuracy, sensitivity, and specificity results demonstrated similar patterns.Significance.The adopted radiomics spatial encoding execution enriches the image heterogeneity information that leads to the successful demonstration of the proposed DEL model, which offers a new tool for mp-MRI-based medical image segmentation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
风中柔发布了新的文献求助10
9秒前
9秒前
三月兔发布了新的文献求助10
14秒前
乐观的西装完成签到,获得积分10
34秒前
三月兔完成签到,获得积分10
41秒前
风中柔关注了科研通微信公众号
49秒前
58秒前
大志发布了新的文献求助10
1分钟前
1分钟前
dawn发布了新的文献求助10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
orixero应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
dawn完成签到,获得积分10
1分钟前
1分钟前
herococa完成签到,获得积分0
1分钟前
1分钟前
坚强的秋白完成签到,获得积分10
1分钟前
dong发布了新的文献求助10
1分钟前
科研通AI6应助lj采纳,获得10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
bkagyin应助LukeLion采纳,获得10
2分钟前
完美世界应助LukeLion采纳,获得10
2分钟前
11发布了新的文献求助10
2分钟前
2分钟前
无花果应助LukeLion采纳,获得10
2分钟前
2分钟前
沐兮完成签到 ,获得积分10
2分钟前
2分钟前
爆米花应助LukeLion采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
3分钟前
浮游应助科研通管家采纳,获得10
3分钟前
3分钟前
浮游应助科研通管家采纳,获得10
3分钟前
华仔应助LukeLion采纳,获得10
3分钟前
3分钟前
英俊的铭应助LukeLion采纳,获得10
3分钟前
11发布了新的文献求助10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Science of Synthesis: Houben–Weyl Methods of Molecular Transformations 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5522699
求助须知:如何正确求助?哪些是违规求助? 4613657
关于积分的说明 14539118
捐赠科研通 4551368
什么是DOI,文献DOI怎么找? 2494224
邀请新用户注册赠送积分活动 1475142
关于科研通互助平台的介绍 1446542