A radiomics-incorporated deep ensemble learning model for multi-parametric MRI-based glioma segmentation

人工智能 计算机科学 流体衰减反转恢复 分割 模式识别(心理学) 无线电技术 特征(语言学) 深度学习 Softmax函数 磁共振成像 降维 放射科 医学 语言学 哲学
作者
Yang Chen,Zhenyu Yang,Jingtong Zhao,Justus Adamson,Sheng Yang,F Yin,Chunhao Wang
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:68 (18): 185025-185025 被引量:2
标识
DOI:10.1088/1361-6560/acf10d
摘要

Objective.To develop a deep ensemble learning (DEL) model with radiomics spatial encoding execution for improved glioma segmentation accuracy using multi-parametric magnetic resonance imaging (mp-MRI).Approach.This model was developed using 369 glioma patients with a four-modality mp-MRI protocol: T1, contrast-enhanced T1 (T1-Ce), T2, and FLAIR. In each modality volume, a 3D sliding kernel was implemented across the brain to capture image heterogeneity: 56 radiomic features were extracted within the kernel, resulting in a fourth-order tensor. Each radiomic feature can then be encoded as a 3D image volume, namely a radiomic feature map (RFM). For each patient, all RFMs extracted from all four modalities were processed using principal component analysis for dimension reduction, and the first four principal components (PCs) were selected. Next, a DEL model comprised of four U-Net sub-models was trained for the segmentation of a region-of-interest: each sub-model utilizes the mp-MRI and one of the four PCs as a five-channel input for 2D execution. Last, four softmax probability results given by the DEL model were superimposed and binarized using Otsu's method as the segmentation results. Three DEL models were trained to segment the enhancing tumor (ET), tumor core (TC), and whole tumor (WT), respectively. The segmentation results given by the proposed ensemble were compared to the mp-MRI-only U-Net results.Main Results.All three radiomics-incorporated DEL models were successfully implemented: compared to the mp-MRI-only U-net results, the dice coefficients of ET (0.777 → 0.817), TC (0.742 → 0.757), and WT (0.823 → 0.854) demonstrated improvement. The accuracy, sensitivity, and specificity results demonstrated similar patterns.Significance.The adopted radiomics spatial encoding execution enriches the image heterogeneity information that leads to the successful demonstration of the proposed DEL model, which offers a new tool for mp-MRI-based medical image segmentation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
佳思思完成签到,获得积分10
刚刚
李爱国应助lx采纳,获得10
刚刚
coconut完成签到,获得积分10
刚刚
积极废物完成签到 ,获得积分10
1秒前
fff完成签到,获得积分10
1秒前
wangxiaoyating完成签到,获得积分10
1秒前
2秒前
欢喜板凳完成签到 ,获得积分0
2秒前
大大超人关注了科研通微信公众号
3秒前
沉梦昂志_hzy完成签到,获得积分0
3秒前
orixero应助li采纳,获得10
3秒前
kmkz完成签到,获得积分10
3秒前
在水一方应助繁荣的悟空采纳,获得10
3秒前
4秒前
南宫书瑶完成签到,获得积分10
4秒前
fff发布了新的文献求助10
4秒前
4秒前
jam发布了新的文献求助20
5秒前
流萤完成签到,获得积分10
5秒前
hh关闭了hh文献求助
5秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
科研菜狗完成签到,获得积分10
6秒前
6秒前
美好山槐完成签到,获得积分10
6秒前
August完成签到,获得积分10
6秒前
smile完成签到,获得积分10
6秒前
daxiangjiao完成签到,获得积分10
7秒前
7秒前
飞艇发布了新的文献求助10
7秒前
李健的小迷弟应助罗克采纳,获得10
7秒前
111完成签到,获得积分10
7秒前
含蓄的安蕾完成签到,获得积分10
7秒前
舒心无剑完成签到 ,获得积分10
8秒前
8秒前
h1909完成签到,获得积分10
8秒前
左丘尔阳完成签到,获得积分10
8秒前
叁拾肆完成签到,获得积分10
8秒前
9秒前
科研菜狗发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573825
求助须知:如何正确求助?哪些是违规求助? 4660098
关于积分的说明 14727788
捐赠科研通 4599933
什么是DOI,文献DOI怎么找? 2524546
邀请新用户注册赠送积分活动 1494900
关于科研通互助平台的介绍 1464997