A radiomics-incorporated deep ensemble learning model for multi-parametric MRI-based glioma segmentation

人工智能 计算机科学 流体衰减反转恢复 分割 模式识别(心理学) 无线电技术 特征(语言学) 深度学习 Softmax函数 磁共振成像 降维 放射科 医学 语言学 哲学
作者
Yang Chen,Zhenyu Yang,Jingtong Zhao,Justus Adamson,Sheng Yang,F Yin,Chunhao Wang
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:68 (18): 185025-185025 被引量:2
标识
DOI:10.1088/1361-6560/acf10d
摘要

Objective.To develop a deep ensemble learning (DEL) model with radiomics spatial encoding execution for improved glioma segmentation accuracy using multi-parametric magnetic resonance imaging (mp-MRI).Approach.This model was developed using 369 glioma patients with a four-modality mp-MRI protocol: T1, contrast-enhanced T1 (T1-Ce), T2, and FLAIR. In each modality volume, a 3D sliding kernel was implemented across the brain to capture image heterogeneity: 56 radiomic features were extracted within the kernel, resulting in a fourth-order tensor. Each radiomic feature can then be encoded as a 3D image volume, namely a radiomic feature map (RFM). For each patient, all RFMs extracted from all four modalities were processed using principal component analysis for dimension reduction, and the first four principal components (PCs) were selected. Next, a DEL model comprised of four U-Net sub-models was trained for the segmentation of a region-of-interest: each sub-model utilizes the mp-MRI and one of the four PCs as a five-channel input for 2D execution. Last, four softmax probability results given by the DEL model were superimposed and binarized using Otsu's method as the segmentation results. Three DEL models were trained to segment the enhancing tumor (ET), tumor core (TC), and whole tumor (WT), respectively. The segmentation results given by the proposed ensemble were compared to the mp-MRI-only U-Net results.Main Results.All three radiomics-incorporated DEL models were successfully implemented: compared to the mp-MRI-only U-net results, the dice coefficients of ET (0.777 → 0.817), TC (0.742 → 0.757), and WT (0.823 → 0.854) demonstrated improvement. The accuracy, sensitivity, and specificity results demonstrated similar patterns.Significance.The adopted radiomics spatial encoding execution enriches the image heterogeneity information that leads to the successful demonstration of the proposed DEL model, which offers a new tool for mp-MRI-based medical image segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
李健应助happyrrc采纳,获得10
刚刚
刚刚
王蕊发布了新的文献求助10
1秒前
xing完成签到,获得积分10
1秒前
天真的大船完成签到 ,获得积分10
2秒前
zasideler完成签到,获得积分10
3秒前
经纬完成签到,获得积分10
3秒前
3秒前
852应助xin采纳,获得10
3秒前
JamesPei应助夏侯初采纳,获得10
4秒前
jojo完成签到,获得积分20
4秒前
4秒前
xu完成签到,获得积分10
4秒前
大Doctor陈完成签到,获得积分10
4秒前
zyb完成签到,获得积分10
4秒前
啾啾尼泊尔完成签到,获得积分10
4秒前
土豪的沅发布了新的文献求助10
5秒前
Judy完成签到,获得积分10
5秒前
5秒前
王怡晓完成签到,获得积分20
5秒前
spacetime发布了新的文献求助10
5秒前
orixero应助小王采纳,获得10
5秒前
基金中中中完成签到,获得积分10
6秒前
文剑武书生完成签到,获得积分10
6秒前
澎湃发布了新的文献求助10
6秒前
愤怒的夜绿完成签到,获得积分10
6秒前
kks569完成签到,获得积分10
6秒前
movoandy发布了新的文献求助10
7秒前
E1gb完成签到,获得积分10
7秒前
华仔应助WLX采纳,获得10
7秒前
大Doctor陈发布了新的文献求助10
8秒前
wow完成签到 ,获得积分10
8秒前
想飞的猪完成签到,获得积分10
8秒前
左右完成签到,获得积分10
8秒前
研友_VZG7GZ应助乖宝采纳,获得30
8秒前
火山暴涨球技完成签到,获得积分10
9秒前
酷波er应助jojo采纳,获得10
9秒前
anonym11完成签到,获得积分10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Vertebrate Palaeontology, 5th Edition 500
Fiction e non fiction: storia, teorie e forme 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5326171
求助须知:如何正确求助?哪些是违规求助? 4466411
关于积分的说明 13896710
捐赠科研通 4358767
什么是DOI,文献DOI怎么找? 2394253
邀请新用户注册赠送积分活动 1387723
关于科研通互助平台的介绍 1358660