A radiomics-incorporated deep ensemble learning model for multi-parametric MRI-based glioma segmentation

人工智能 计算机科学 流体衰减反转恢复 分割 模式识别(心理学) 无线电技术 特征(语言学) 深度学习 Softmax函数 磁共振成像 降维 放射科 医学 语言学 哲学
作者
Yang Chen,Zhenyu Yang,Jingtong Zhao,Justus Adamson,Sheng Yang,F Yin,Chunhao Wang
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:68 (18): 185025-185025 被引量:2
标识
DOI:10.1088/1361-6560/acf10d
摘要

Objective.To develop a deep ensemble learning (DEL) model with radiomics spatial encoding execution for improved glioma segmentation accuracy using multi-parametric magnetic resonance imaging (mp-MRI).Approach.This model was developed using 369 glioma patients with a four-modality mp-MRI protocol: T1, contrast-enhanced T1 (T1-Ce), T2, and FLAIR. In each modality volume, a 3D sliding kernel was implemented across the brain to capture image heterogeneity: 56 radiomic features were extracted within the kernel, resulting in a fourth-order tensor. Each radiomic feature can then be encoded as a 3D image volume, namely a radiomic feature map (RFM). For each patient, all RFMs extracted from all four modalities were processed using principal component analysis for dimension reduction, and the first four principal components (PCs) were selected. Next, a DEL model comprised of four U-Net sub-models was trained for the segmentation of a region-of-interest: each sub-model utilizes the mp-MRI and one of the four PCs as a five-channel input for 2D execution. Last, four softmax probability results given by the DEL model were superimposed and binarized using Otsu's method as the segmentation results. Three DEL models were trained to segment the enhancing tumor (ET), tumor core (TC), and whole tumor (WT), respectively. The segmentation results given by the proposed ensemble were compared to the mp-MRI-only U-Net results.Main Results.All three radiomics-incorporated DEL models were successfully implemented: compared to the mp-MRI-only U-net results, the dice coefficients of ET (0.777 → 0.817), TC (0.742 → 0.757), and WT (0.823 → 0.854) demonstrated improvement. The accuracy, sensitivity, and specificity results demonstrated similar patterns.Significance.The adopted radiomics spatial encoding execution enriches the image heterogeneity information that leads to the successful demonstration of the proposed DEL model, which offers a new tool for mp-MRI-based medical image segmentation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
0x3f完成签到 ,获得积分10
2秒前
qhdsyxy完成签到 ,获得积分0
6秒前
甜蜜水蜜桃完成签到 ,获得积分10
7秒前
FOB完成签到,获得积分10
9秒前
青野乾朔完成签到 ,获得积分10
9秒前
yyds应助FOB采纳,获得50
12秒前
LJY完成签到 ,获得积分10
13秒前
修兮完成签到 ,获得积分10
13秒前
gzsy完成签到 ,获得积分10
16秒前
Matberry完成签到 ,获得积分10
19秒前
筱诸雄完成签到,获得积分10
19秒前
谦让汝燕完成签到,获得积分10
29秒前
真的不想干活了完成签到,获得积分10
30秒前
糊涂的青烟完成签到 ,获得积分10
30秒前
31秒前
_h完成签到 ,获得积分10
33秒前
史克珍香完成签到 ,获得积分10
36秒前
小月顺利毕业版完成签到,获得积分10
36秒前
38秒前
831143完成签到 ,获得积分0
39秒前
灼灼朗朗完成签到,获得积分10
39秒前
pen完成签到 ,获得积分10
39秒前
2568269431完成签到 ,获得积分10
43秒前
44秒前
fiona完成签到,获得积分0
45秒前
波波完成签到 ,获得积分10
47秒前
鲤鱼元槐发布了新的文献求助10
48秒前
sunnyqqz完成签到,获得积分10
51秒前
hyt完成签到 ,获得积分10
54秒前
Zilch完成签到 ,获得积分10
55秒前
S.S.N完成签到 ,获得积分10
56秒前
氟锑酸完成签到 ,获得积分10
59秒前
宇文雨文完成签到,获得积分10
1分钟前
magicyang完成签到,获得积分10
1分钟前
小李完成签到 ,获得积分10
1分钟前
机智的孤兰完成签到 ,获得积分10
1分钟前
李垣锦完成签到 ,获得积分10
1分钟前
猜不猜不完成签到 ,获得积分10
1分钟前
阿莳完成签到 ,获得积分10
1分钟前
俏皮诺言完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1541
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5498623
求助须知:如何正确求助?哪些是违规求助? 4595798
关于积分的说明 14449800
捐赠科研通 4528763
什么是DOI,文献DOI怎么找? 2481719
邀请新用户注册赠送积分活动 1465732
关于科研通互助平台的介绍 1438561