亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A radiomics-incorporated deep ensemble learning model for multi-parametric MRI-based glioma segmentation

人工智能 计算机科学 流体衰减反转恢复 分割 模式识别(心理学) 无线电技术 特征(语言学) 深度学习 Softmax函数 磁共振成像 降维 放射科 医学 语言学 哲学
作者
Yang Chen,Zhenyu Yang,Jingtong Zhao,Justus Adamson,Sheng Yang,F Yin,Chunhao Wang
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:68 (18): 185025-185025 被引量:2
标识
DOI:10.1088/1361-6560/acf10d
摘要

Objective.To develop a deep ensemble learning (DEL) model with radiomics spatial encoding execution for improved glioma segmentation accuracy using multi-parametric magnetic resonance imaging (mp-MRI).Approach.This model was developed using 369 glioma patients with a four-modality mp-MRI protocol: T1, contrast-enhanced T1 (T1-Ce), T2, and FLAIR. In each modality volume, a 3D sliding kernel was implemented across the brain to capture image heterogeneity: 56 radiomic features were extracted within the kernel, resulting in a fourth-order tensor. Each radiomic feature can then be encoded as a 3D image volume, namely a radiomic feature map (RFM). For each patient, all RFMs extracted from all four modalities were processed using principal component analysis for dimension reduction, and the first four principal components (PCs) were selected. Next, a DEL model comprised of four U-Net sub-models was trained for the segmentation of a region-of-interest: each sub-model utilizes the mp-MRI and one of the four PCs as a five-channel input for 2D execution. Last, four softmax probability results given by the DEL model were superimposed and binarized using Otsu's method as the segmentation results. Three DEL models were trained to segment the enhancing tumor (ET), tumor core (TC), and whole tumor (WT), respectively. The segmentation results given by the proposed ensemble were compared to the mp-MRI-only U-Net results.Main Results.All three radiomics-incorporated DEL models were successfully implemented: compared to the mp-MRI-only U-net results, the dice coefficients of ET (0.777 → 0.817), TC (0.742 → 0.757), and WT (0.823 → 0.854) demonstrated improvement. The accuracy, sensitivity, and specificity results demonstrated similar patterns.Significance.The adopted radiomics spatial encoding execution enriches the image heterogeneity information that leads to the successful demonstration of the proposed DEL model, which offers a new tool for mp-MRI-based medical image segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
Benhnhk21完成签到,获得积分10
3秒前
12秒前
18秒前
22秒前
46秒前
55秒前
1分钟前
1分钟前
Ye完成签到,获得积分10
1分钟前
olekravchenko发布了新的文献求助10
1分钟前
1分钟前
1分钟前
小二郎应助科研通管家采纳,获得10
2分钟前
VDC应助科研通管家采纳,获得30
2分钟前
VDC应助科研通管家采纳,获得30
2分钟前
VDC应助科研通管家采纳,获得30
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
在水一方应助鱿鱼起司采纳,获得10
2分钟前
充电宝应助yyh采纳,获得10
3分钟前
3分钟前
3分钟前
培培完成签到 ,获得积分10
3分钟前
yyh发布了新的文献求助10
3分钟前
聪明的黑猫完成签到 ,获得积分10
3分钟前
3分钟前
4分钟前
4分钟前
早日发文章完成签到,获得积分10
4分钟前
4分钟前
顏泰楊完成签到,获得积分10
4分钟前
4分钟前
Tales完成签到 ,获得积分10
5分钟前
OhHH完成签到 ,获得积分10
5分钟前
5分钟前
不萌不zs发布了新的文献求助10
5分钟前
VDC应助科研通管家采纳,获得30
5分钟前
VDC应助科研通管家采纳,获得30
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482463
求助须知:如何正确求助?哪些是违规求助? 4583236
关于积分的说明 14389068
捐赠科研通 4512329
什么是DOI,文献DOI怎么找? 2472848
邀请新用户注册赠送积分活动 1459082
关于科研通互助平台的介绍 1432553