Flexible Tensor Learning for Multi-View Clustering With Markov Chain

聚类分析 马尔可夫链 计算机科学 张量(固有定义) 理论计算机科学 人工智能 算法 机器学习 数学 纯数学
作者
Yalan Qin,Zhenjun Tang,Hanzhou Wu,Guorui Feng
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [Institute of Electrical and Electronics Engineers]
卷期号:36 (4): 1552-1565 被引量:17
标识
DOI:10.1109/tkde.2023.3305624
摘要

Multi-view clustering has gained great progress recently, which employs the representations from different views for improving the final performance. In this paper, we focus on the problem of multi-view clustering based on the Markov chain by considering low-rank constraints. Since most existing methods fail to simultaneously characterize the relations among different entries in a tensor from the global perspective and describe local structures of similarity matrices of a tensor, we propose a novel Flexible Tensor Learning for Multi-view Clustering with the Markov chain (FTLMCM) to solve this problem. We also construct transition probability matrices based on the Markov chain to fully utilize the connection between the Markov chain and spectral clustering. Specifically, the low-rank constraints of the tensor, the frontal slices and the lateral slices of the tensor are imposed on the objective function of the proposed method to achieve these goals. Besides, these three constraints can be optimized jointly to achieve mutual refinement. FTLMCM also uses the tensor rotation to better explore the relationships among different views. We formulate FTLMCM as a problem of low-rank tensor recovery and solve it with the augmented Lagrangian multiplier. Experiments on six different benchmark data sets under six metrics demonstrate that the proposed method is able to achieve better clustering performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Walker完成签到,获得积分10
刚刚
华仔应助落寞的采文采纳,获得10
1秒前
青鱼发布了新的文献求助10
1秒前
lignin完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
2秒前
TIANEO完成签到,获得积分20
2秒前
cytomix完成签到,获得积分10
2秒前
orixero应助年轻的冰淇淋采纳,获得10
2秒前
清新王老吉完成签到,获得积分10
3秒前
4秒前
4秒前
量子星尘发布了新的文献求助30
4秒前
默默海露完成签到,获得积分20
4秒前
Vicky1111完成签到,获得积分10
5秒前
5秒前
5秒前
5秒前
6秒前
6秒前
6秒前
BUG完成签到,获得积分10
6秒前
邓施展关注了科研通微信公众号
6秒前
8秒前
Cloud发布了新的文献求助10
8秒前
万能图书馆应助布吉岛采纳,获得10
9秒前
9秒前
迅速翠风关注了科研通微信公众号
10秒前
青鱼发布了新的文献求助10
10秒前
青鱼发布了新的文献求助10
10秒前
青鱼发布了新的文献求助10
10秒前
青鱼发布了新的文献求助10
10秒前
青鱼发布了新的文献求助10
10秒前
简化为完成签到,获得积分10
10秒前
飞翔的鸣发布了新的文献求助10
10秒前
Sea_shark发布了新的文献求助10
11秒前
11秒前
田様应助xiaoman采纳,获得10
12秒前
魔仙堡狸花猫完成签到,获得积分10
12秒前
kkk完成签到,获得积分20
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718021
求助须知:如何正确求助?哪些是违规求助? 5250051
关于积分的说明 15284272
捐赠科研通 4868198
什么是DOI,文献DOI怎么找? 2614063
邀请新用户注册赠送积分活动 1563973
关于科研通互助平台的介绍 1521425