亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Flexible Tensor Learning for Multi-View Clustering With Markov Chain

聚类分析 马尔可夫链 计算机科学 张量(固有定义) 理论计算机科学 人工智能 算法 机器学习 数学 纯数学
作者
Yalan Qin,Zhenjun Tang,Hanzhou Wu,Guorui Feng
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [Institute of Electrical and Electronics Engineers]
卷期号:36 (4): 1552-1565 被引量:17
标识
DOI:10.1109/tkde.2023.3305624
摘要

Multi-view clustering has gained great progress recently, which employs the representations from different views for improving the final performance. In this paper, we focus on the problem of multi-view clustering based on the Markov chain by considering low-rank constraints. Since most existing methods fail to simultaneously characterize the relations among different entries in a tensor from the global perspective and describe local structures of similarity matrices of a tensor, we propose a novel Flexible Tensor Learning for Multi-view Clustering with the Markov chain (FTLMCM) to solve this problem. We also construct transition probability matrices based on the Markov chain to fully utilize the connection between the Markov chain and spectral clustering. Specifically, the low-rank constraints of the tensor, the frontal slices and the lateral slices of the tensor are imposed on the objective function of the proposed method to achieve these goals. Besides, these three constraints can be optimized jointly to achieve mutual refinement. FTLMCM also uses the tensor rotation to better explore the relationships among different views. We formulate FTLMCM as a problem of low-rank tensor recovery and solve it with the augmented Lagrangian multiplier. Experiments on six different benchmark data sets under six metrics demonstrate that the proposed method is able to achieve better clustering performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
5秒前
Cmqq发布了新的文献求助10
8秒前
12秒前
薄荷发布了新的文献求助10
13秒前
28秒前
彭于晏应助ceeray23采纳,获得20
35秒前
万能图书馆应助小江采纳,获得10
1分钟前
受伤纲完成签到 ,获得积分10
1分钟前
1分钟前
flyinthesky完成签到,获得积分10
1分钟前
花花公子完成签到,获得积分10
1分钟前
深情安青应助Cmqq采纳,获得10
1分钟前
1分钟前
张晓祁完成签到,获得积分10
1分钟前
小江发布了新的文献求助10
1分钟前
yueying完成签到,获得积分10
1分钟前
SciGPT应助科研通管家采纳,获得10
1分钟前
BowieHuang应助科研通管家采纳,获得10
1分钟前
BowieHuang应助科研通管家采纳,获得10
1分钟前
BowieHuang应助科研通管家采纳,获得10
1分钟前
鲤鱼笑南完成签到,获得积分10
1分钟前
2分钟前
2分钟前
2分钟前
2分钟前
Mia发布了新的文献求助10
2分钟前
2分钟前
2分钟前
Cmqq发布了新的文献求助10
2分钟前
SciGPT应助Mia采纳,获得10
2分钟前
3分钟前
丽君发布了新的文献求助10
3分钟前
sidashu完成签到,获得积分10
3分钟前
田様应助Cmqq采纳,获得10
3分钟前
乌乌完成签到,获得积分10
3分钟前
萌仔完成签到,获得积分10
3分钟前
萌仔发布了新的文献求助10
3分钟前
Mei完成签到,获得积分10
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599776
求助须知:如何正确求助?哪些是违规求助? 4685512
关于积分的说明 14838542
捐赠科研通 4670527
什么是DOI,文献DOI怎么找? 2538202
邀请新用户注册赠送积分活动 1505527
关于科研通互助平台的介绍 1470904