Flexible Tensor Learning for Multi-View Clustering With Markov Chain

聚类分析 马尔可夫链 计算机科学 张量(固有定义) 理论计算机科学 人工智能 算法 机器学习 数学 纯数学
作者
Yalan Qin,Zhenjun Tang,Hanzhou Wu,Guorui Feng
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [IEEE Computer Society]
卷期号:36 (4): 1552-1565 被引量:17
标识
DOI:10.1109/tkde.2023.3305624
摘要

Multi-view clustering has gained great progress recently, which employs the representations from different views for improving the final performance. In this paper, we focus on the problem of multi-view clustering based on the Markov chain by considering low-rank constraints. Since most existing methods fail to simultaneously characterize the relations among different entries in a tensor from the global perspective and describe local structures of similarity matrices of a tensor, we propose a novel Flexible Tensor Learning for Multi-view Clustering with the Markov chain (FTLMCM) to solve this problem. We also construct transition probability matrices based on the Markov chain to fully utilize the connection between the Markov chain and spectral clustering. Specifically, the low-rank constraints of the tensor, the frontal slices and the lateral slices of the tensor are imposed on the objective function of the proposed method to achieve these goals. Besides, these three constraints can be optimized jointly to achieve mutual refinement. FTLMCM also uses the tensor rotation to better explore the relationships among different views. We formulate FTLMCM as a problem of low-rank tensor recovery and solve it with the augmented Lagrangian multiplier. Experiments on six different benchmark data sets under six metrics demonstrate that the proposed method is able to achieve better clustering performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hello应助Jim采纳,获得10
1秒前
SYLH应助杨南南采纳,获得10
1秒前
傻子发布了新的文献求助10
4秒前
圆锥香蕉举报hping求助涉嫌违规
4秒前
5秒前
7秒前
8秒前
8秒前
9秒前
10秒前
lucyliu完成签到 ,获得积分10
11秒前
欣慰妙海发布了新的文献求助10
12秒前
Owen应助小李找文献采纳,获得10
13秒前
13秒前
13秒前
务实源智发布了新的文献求助30
13秒前
巫马百招完成签到,获得积分10
15秒前
青云客发布了新的文献求助10
15秒前
wang00wmd发布了新的文献求助20
16秒前
16秒前
量子星尘发布了新的文献求助10
16秒前
Jasper应助韩凡采纳,获得10
19秒前
21秒前
22秒前
Strongly完成签到,获得积分10
23秒前
NexusExplorer应助dilli采纳,获得10
23秒前
傻子关注了科研通微信公众号
23秒前
董海涛发布了新的文献求助10
24秒前
27秒前
呆萌语梦完成签到,获得积分10
28秒前
李健的小迷弟应助LuoYixiang采纳,获得10
28秒前
29秒前
隐形元彤完成签到 ,获得积分10
30秒前
Beth完成签到,获得积分10
30秒前
31秒前
wang00wmd完成签到,获得积分10
32秒前
韩凡发布了新的文献求助10
33秒前
Hello应助巴斯光年采纳,获得10
35秒前
领导范儿应助务实的听筠采纳,获得10
35秒前
搜集达人应助往返采纳,获得10
36秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979662
求助须知:如何正确求助?哪些是违规求助? 3523636
关于积分的说明 11218202
捐赠科研通 3261164
什么是DOI,文献DOI怎么找? 1800473
邀请新用户注册赠送积分活动 879103
科研通“疑难数据库(出版商)”最低求助积分说明 807167