亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Predicting wettability of mineral/CO2/brine systems via data-driven machine learning modeling: Implications for carbon geo-sequestration

固碳 卤水 润湿 环境科学 二氧化碳 工艺工程 石油工程 地质学 化学工程 化学 工程类 有机化学
作者
Zeeshan Tariq,Muhammad Ali,Aliakbar Hassanpouryouzband,Bicheng Yan,Shuyu Sun,Hussein Hoteit
出处
期刊:Chemosphere [Elsevier]
卷期号:345: 140469-140469 被引量:8
标识
DOI:10.1016/j.chemosphere.2023.140469
摘要

Effectively storing carbon dioxide (CO2) in geological formations synergizes with algal-based removal technology, enhancing carbon capture efficiency, leveraging biological processes for sustainable, long-term sequestration while aiding ecosystem restoration. On the other hand, geological carbon storage effectiveness depends on the interactions and wettability of rock, CO2, and brine. Rock wettability during storage determines the CO2/brine distribution, maximum storage capacity, and trapping potential. Due to the high CO2 reactivity and damage risk, an experimental assessment of the CO2 wettability on storage/caprocks is challenging. Data-driven machine learning (ML) models provide an efficient and less strenuous alternative, enabling research at geological storage conditions that are impossible or hazardous to achieve in the laboratory. This study used robust ML models, including fully connected feedforward neural networks (FCFNNs), extreme gradient boosting, k-nearest neighbors, decision trees, adaptive boosting, and random forest, to model the wettability of the CO2/brine and rock minerals (quartz and mica) in a ternary system under varying conditions. Exploratory data analysis methods were used to examine the experimental data. The GridSearchCV and Kfold cross-validation approaches were implemented to augment the performance abilities of the ML models. In addition, sensitivity plots were generated to study the influence of individual parameters on the model performance. The results indicated that the applied ML models accurately predicted the wettability behavior of the mineral/CO2/brine system under various operating conditions, where FCFNN performed better than other ML techniques with an R2 above 0.98 and an error of less than 3%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天快乐应助科研通管家采纳,获得10
18秒前
29秒前
路漫漫完成签到,获得积分20
53秒前
路漫漫发布了新的文献求助10
55秒前
科研通AI2S应助路漫漫采纳,获得10
1分钟前
1分钟前
熊仔一百完成签到 ,获得积分10
1分钟前
HLT完成签到 ,获得积分10
1分钟前
zzuzll完成签到,获得积分10
1分钟前
DoggyBadiou发布了新的文献求助10
2分钟前
3分钟前
完美世界应助DoggyBadiou采纳,获得10
3分钟前
芊瑶发布了新的文献求助10
3分钟前
共享精神应助菩提本无树采纳,获得10
4分钟前
4分钟前
jyy发布了新的文献求助200
4分钟前
赘婿应助怕黑凝天采纳,获得30
4分钟前
NexusExplorer应助科研通管家采纳,获得10
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
怕黑凝天发布了新的文献求助30
4分钟前
4分钟前
4分钟前
情怀应助bukeshuo采纳,获得10
5分钟前
5分钟前
5分钟前
xiaorui发布了新的文献求助10
5分钟前
JamesPei应助xiaorui采纳,获得10
6分钟前
6分钟前
陈媛发布了新的文献求助10
6分钟前
6分钟前
毓香谷的春天完成签到 ,获得积分10
7分钟前
贪玩的一曲完成签到,获得积分10
7分钟前
7分钟前
FashionBoy应助我爱科研采纳,获得10
7分钟前
高分求助中
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Актуализированная стратиграфическая схема триасовых отложений Прикаспийского региона. Объяснительная записка 360
Project Studies: A Late Modern University Reform? 300
2024 Medicinal Chemistry Reviews 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3167178
求助须知:如何正确求助?哪些是违规求助? 2818660
关于积分的说明 7921848
捐赠科研通 2478428
什么是DOI,文献DOI怎么找? 1320299
科研通“疑难数据库(出版商)”最低求助积分说明 632748
版权声明 602438