Predicting wettability of mineral/CO2/brine systems via data-driven machine learning modeling: Implications for carbon geo-sequestration

固碳 卤水 润湿 环境科学 二氧化碳 工艺工程 石油工程 地质学 化学工程 化学 工程类 有机化学
作者
Zeeshan Tariq,Muhammad Ali,Aliakbar Hassanpouryouzband,Bicheng Yan,Shuyu Sun,Hussein Hoteit
出处
期刊:Chemosphere [Elsevier BV]
卷期号:345: 140469-140469 被引量:22
标识
DOI:10.1016/j.chemosphere.2023.140469
摘要

Effectively storing carbon dioxide (CO2) in geological formations synergizes with algal-based removal technology, enhancing carbon capture efficiency, leveraging biological processes for sustainable, long-term sequestration while aiding ecosystem restoration. On the other hand, geological carbon storage effectiveness depends on the interactions and wettability of rock, CO2, and brine. Rock wettability during storage determines the CO2/brine distribution, maximum storage capacity, and trapping potential. Due to the high CO2 reactivity and damage risk, an experimental assessment of the CO2 wettability on storage/caprocks is challenging. Data-driven machine learning (ML) models provide an efficient and less strenuous alternative, enabling research at geological storage conditions that are impossible or hazardous to achieve in the laboratory. This study used robust ML models, including fully connected feedforward neural networks (FCFNNs), extreme gradient boosting, k-nearest neighbors, decision trees, adaptive boosting, and random forest, to model the wettability of the CO2/brine and rock minerals (quartz and mica) in a ternary system under varying conditions. Exploratory data analysis methods were used to examine the experimental data. The GridSearchCV and Kfold cross-validation approaches were implemented to augment the performance abilities of the ML models. In addition, sensitivity plots were generated to study the influence of individual parameters on the model performance. The results indicated that the applied ML models accurately predicted the wettability behavior of the mineral/CO2/brine system under various operating conditions, where FCFNN performed better than other ML techniques with an R2 above 0.98 and an error of less than 3%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
JackeyChen发布了新的文献求助10
2秒前
2秒前
3秒前
熊一只完成签到,获得积分10
3秒前
杨欣发布了新的文献求助10
3秒前
杨欣发布了新的文献求助10
3秒前
杨欣发布了新的文献求助10
3秒前
3秒前
4秒前
zyh给zyh的求助进行了留言
5秒前
underoos完成签到,获得积分10
5秒前
Victor66685应助111采纳,获得30
7秒前
7秒前
cyy完成签到,获得积分10
8秒前
8秒前
underoos发布了新的文献求助10
9秒前
张不张发布了新的文献求助10
9秒前
9秒前
alian发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
9秒前
she发布了新的文献求助10
9秒前
拼搏的韭菜完成签到,获得积分10
10秒前
优美巨人发布了新的文献求助10
10秒前
Akim应助cc采纳,获得10
11秒前
11秒前
星辰大海应助清欢采纳,获得10
12秒前
斯文败类应助小冯采纳,获得10
12秒前
细心蚂蚁发布了新的文献求助10
12秒前
SunOSun发布了新的文献求助30
13秒前
学术laji发布了新的文献求助10
13秒前
13秒前
15秒前
科研通AI5应助xiaoyu123采纳,获得10
15秒前
15秒前
情怀应助awwww采纳,获得10
16秒前
neckerzhu发布了新的文献求助10
16秒前
紧张的惜寒完成签到,获得积分10
18秒前
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
International Encyclopedia of Business Management 1000
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4934228
求助须知:如何正确求助?哪些是违规求助? 4202186
关于积分的说明 13056265
捐赠科研通 3976412
什么是DOI,文献DOI怎么找? 2178969
邀请新用户注册赠送积分活动 1195288
关于科研通互助平台的介绍 1106655