Predicting wettability of mineral/CO2/brine systems via data-driven machine learning modeling: Implications for carbon geo-sequestration

固碳 卤水 润湿 环境科学 二氧化碳 工艺工程 石油工程 地质学 化学工程 化学 工程类 有机化学
作者
Zeeshan Tariq,Muhammad Ali,Aliakbar Hassanpouryouzband,Bicheng Yan,Shuyu Sun,Hussein Hoteit
出处
期刊:Chemosphere [Elsevier]
卷期号:345: 140469-140469 被引量:22
标识
DOI:10.1016/j.chemosphere.2023.140469
摘要

Effectively storing carbon dioxide (CO2) in geological formations synergizes with algal-based removal technology, enhancing carbon capture efficiency, leveraging biological processes for sustainable, long-term sequestration while aiding ecosystem restoration. On the other hand, geological carbon storage effectiveness depends on the interactions and wettability of rock, CO2, and brine. Rock wettability during storage determines the CO2/brine distribution, maximum storage capacity, and trapping potential. Due to the high CO2 reactivity and damage risk, an experimental assessment of the CO2 wettability on storage/caprocks is challenging. Data-driven machine learning (ML) models provide an efficient and less strenuous alternative, enabling research at geological storage conditions that are impossible or hazardous to achieve in the laboratory. This study used robust ML models, including fully connected feedforward neural networks (FCFNNs), extreme gradient boosting, k-nearest neighbors, decision trees, adaptive boosting, and random forest, to model the wettability of the CO2/brine and rock minerals (quartz and mica) in a ternary system under varying conditions. Exploratory data analysis methods were used to examine the experimental data. The GridSearchCV and Kfold cross-validation approaches were implemented to augment the performance abilities of the ML models. In addition, sensitivity plots were generated to study the influence of individual parameters on the model performance. The results indicated that the applied ML models accurately predicted the wettability behavior of the mineral/CO2/brine system under various operating conditions, where FCFNN performed better than other ML techniques with an R2 above 0.98 and an error of less than 3%.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
17381362015完成签到 ,获得积分10
刚刚
温婉的篮球完成签到,获得积分10
1秒前
psylan应助Chemberry采纳,获得10
2秒前
cpxliteratur完成签到,获得积分10
2秒前
3秒前
4秒前
醉爱星星发布了新的文献求助10
6秒前
SciGPT应助单手开坦克采纳,获得10
6秒前
6秒前
7秒前
渭水飞熊发布了新的文献求助10
8秒前
8秒前
曹年跃完成签到,获得积分10
9秒前
9秒前
努力小周完成签到,获得积分10
10秒前
怕孤单的幼荷完成签到 ,获得积分10
11秒前
任性翩跹发布了新的文献求助10
11秒前
yuejian完成签到,获得积分10
12秒前
13秒前
慕青应助爱蹦跶的废物采纳,获得10
13秒前
吕佳蔚完成签到,获得积分10
16秒前
淡定怜南发布了新的文献求助30
16秒前
16秒前
16秒前
隐形曼青应助吨吨采纳,获得10
17秒前
李爱国应助小小K采纳,获得10
19秒前
20秒前
科研通AI2S应助张zhang采纳,获得10
20秒前
英俊的铭应助研友_LmVygn采纳,获得10
21秒前
965481发布了新的文献求助10
22秒前
22秒前
雨辰完成签到 ,获得积分10
23秒前
思源应助雾山五行采纳,获得10
23秒前
末小皮发布了新的文献求助10
23秒前
Rangi发布了新的文献求助10
25秒前
萱苏完成签到,获得积分10
26秒前
852应助夏侯幻梦采纳,获得10
27秒前
965481完成签到,获得积分10
29秒前
29秒前
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5559994
求助须知:如何正确求助?哪些是违规求助? 4645112
关于积分的说明 14674328
捐赠科研通 4586220
什么是DOI,文献DOI怎么找? 2516312
邀请新用户注册赠送积分活动 1490000
关于科研通互助平台的介绍 1460841