Predicting wettability of mineral/CO2/brine systems via data-driven machine learning modeling: Implications for carbon geo-sequestration

固碳 卤水 润湿 环境科学 二氧化碳 工艺工程 石油工程 地质学 化学工程 化学 工程类 有机化学
作者
Zeeshan Tariq,Muhammad Ali,Aliakbar Hassanpouryouzband,Bicheng Yan,Shuyu Sun,Hussein Hoteit
出处
期刊:Chemosphere [Elsevier]
卷期号:345: 140469-140469 被引量:22
标识
DOI:10.1016/j.chemosphere.2023.140469
摘要

Effectively storing carbon dioxide (CO2) in geological formations synergizes with algal-based removal technology, enhancing carbon capture efficiency, leveraging biological processes for sustainable, long-term sequestration while aiding ecosystem restoration. On the other hand, geological carbon storage effectiveness depends on the interactions and wettability of rock, CO2, and brine. Rock wettability during storage determines the CO2/brine distribution, maximum storage capacity, and trapping potential. Due to the high CO2 reactivity and damage risk, an experimental assessment of the CO2 wettability on storage/caprocks is challenging. Data-driven machine learning (ML) models provide an efficient and less strenuous alternative, enabling research at geological storage conditions that are impossible or hazardous to achieve in the laboratory. This study used robust ML models, including fully connected feedforward neural networks (FCFNNs), extreme gradient boosting, k-nearest neighbors, decision trees, adaptive boosting, and random forest, to model the wettability of the CO2/brine and rock minerals (quartz and mica) in a ternary system under varying conditions. Exploratory data analysis methods were used to examine the experimental data. The GridSearchCV and Kfold cross-validation approaches were implemented to augment the performance abilities of the ML models. In addition, sensitivity plots were generated to study the influence of individual parameters on the model performance. The results indicated that the applied ML models accurately predicted the wettability behavior of the mineral/CO2/brine system under various operating conditions, where FCFNN performed better than other ML techniques with an R2 above 0.98 and an error of less than 3%.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
abcaaa发布了新的文献求助10
1秒前
shanpengliu发布了新的文献求助10
2秒前
2秒前
樊书雪发布了新的文献求助10
2秒前
Lii完成签到,获得积分10
2秒前
CodeCraft应助铎子采纳,获得10
3秒前
kwai完成签到,获得积分20
3秒前
长安完成签到,获得积分10
4秒前
季文婷发布了新的文献求助10
5秒前
6秒前
m彬m彬完成签到 ,获得积分10
6秒前
kwai发布了新的文献求助10
6秒前
小魔笛发布了新的文献求助10
6秒前
7秒前
万卷书发布了新的文献求助10
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
英俊的铭应助科研通管家采纳,获得10
8秒前
机灵柚子应助科研通管家采纳,获得10
8秒前
8秒前
英俊的铭应助科研通管家采纳,获得10
8秒前
8秒前
机灵柚子应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
Tomato应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
思源应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
Tomato应助科研通管家采纳,获得10
9秒前
机灵柚子应助科研通管家采纳,获得10
9秒前
思源应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
Hello应助科研通管家采纳,获得10
9秒前
机灵柚子应助科研通管家采纳,获得10
9秒前
赘婿应助科研通管家采纳,获得10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5778188
求助须知:如何正确求助?哪些是违规求助? 5639026
关于积分的说明 15448263
捐赠科研通 4910052
什么是DOI,文献DOI怎么找? 2642147
邀请新用户注册赠送积分活动 1590080
关于科研通互助平台的介绍 1544494