Predicting wettability of mineral/CO2/brine systems via data-driven machine learning modeling: Implications for carbon geo-sequestration

固碳 卤水 润湿 环境科学 二氧化碳 工艺工程 石油工程 地质学 化学工程 化学 工程类 有机化学
作者
Zeeshan Tariq,Muhammad Ali,Aliakbar Hassanpouryouzband,Bicheng Yan,Shuyu Sun,Hussein Hoteit
出处
期刊:Chemosphere [Elsevier]
卷期号:345: 140469-140469 被引量:22
标识
DOI:10.1016/j.chemosphere.2023.140469
摘要

Effectively storing carbon dioxide (CO2) in geological formations synergizes with algal-based removal technology, enhancing carbon capture efficiency, leveraging biological processes for sustainable, long-term sequestration while aiding ecosystem restoration. On the other hand, geological carbon storage effectiveness depends on the interactions and wettability of rock, CO2, and brine. Rock wettability during storage determines the CO2/brine distribution, maximum storage capacity, and trapping potential. Due to the high CO2 reactivity and damage risk, an experimental assessment of the CO2 wettability on storage/caprocks is challenging. Data-driven machine learning (ML) models provide an efficient and less strenuous alternative, enabling research at geological storage conditions that are impossible or hazardous to achieve in the laboratory. This study used robust ML models, including fully connected feedforward neural networks (FCFNNs), extreme gradient boosting, k-nearest neighbors, decision trees, adaptive boosting, and random forest, to model the wettability of the CO2/brine and rock minerals (quartz and mica) in a ternary system under varying conditions. Exploratory data analysis methods were used to examine the experimental data. The GridSearchCV and Kfold cross-validation approaches were implemented to augment the performance abilities of the ML models. In addition, sensitivity plots were generated to study the influence of individual parameters on the model performance. The results indicated that the applied ML models accurately predicted the wettability behavior of the mineral/CO2/brine system under various operating conditions, where FCFNN performed better than other ML techniques with an R2 above 0.98 and an error of less than 3%.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jolt完成签到,获得积分10
1秒前
2秒前
王小乔完成签到 ,获得积分10
2秒前
2秒前
2秒前
2秒前
大力的南琴完成签到,获得积分10
2秒前
3秒前
pluto应助xinyue采纳,获得50
3秒前
量子星尘发布了新的文献求助10
4秒前
super chan完成签到,获得积分10
4秒前
4秒前
坚定的半邪完成签到,获得积分20
5秒前
研友_VZG7GZ应助ddd采纳,获得10
5秒前
细腻慕儿完成签到 ,获得积分10
5秒前
浮黎元始天尊完成签到,获得积分10
6秒前
胡舒阳发布了新的文献求助10
7秒前
小谢同学发布了新的文献求助10
8秒前
天天快乐应助尤萨采纳,获得10
8秒前
微笑初彤发布了新的文献求助10
8秒前
8秒前
9秒前
Chen发布了新的文献求助10
11秒前
SJW--666完成签到,获得积分0
13秒前
瘦瘦听云发布了新的文献求助10
13秒前
万能图书馆应助穿多点采纳,获得10
13秒前
无花果应助qw采纳,获得10
14秒前
完美世界应助Shirley采纳,获得30
14秒前
liu完成签到 ,获得积分10
15秒前
15秒前
英姑应助坚定的半邪采纳,获得200
16秒前
DZS完成签到 ,获得积分10
16秒前
Hiro完成签到 ,获得积分10
16秒前
18秒前
魔法世界完成签到,获得积分10
19秒前
尤萨发布了新的文献求助10
19秒前
丘比特应助luna107采纳,获得10
20秒前
是瓜瓜不完成签到,获得积分10
20秒前
科研通AI6.1应助疏影采纳,获得10
21秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5737113
求助须知:如何正确求助?哪些是违规求助? 5371030
关于积分的说明 15334920
捐赠科研通 4880851
什么是DOI,文献DOI怎么找? 2623064
邀请新用户注册赠送积分活动 1571894
关于科研通互助平台的介绍 1528752