Model metamers reveal divergent invariances between biological and artificial neural networks

人工智能 人工神经网络 刺激(心理学) 计算机科学 水准点(测量) 模式识别(心理学) 感觉系统 心理学 神经科学 认知心理学 大地测量学 地理
作者
Jenelle Feather,Guillaume Leclerc,Aleksander Mądry,Josh H. McDermott
出处
期刊:Nature Neuroscience [Springer Nature]
标识
DOI:10.1038/s41593-023-01442-0
摘要

Deep neural network models of sensory systems are often proposed to learn representational transformations with invariances like those in the brain. To reveal these invariances, we generated 'model metamers', stimuli whose activations within a model stage are matched to those of a natural stimulus. Metamers for state-of-the-art supervised and unsupervised neural network models of vision and audition were often completely unrecognizable to humans when generated from late model stages, suggesting differences between model and human invariances. Targeted model changes improved human recognizability of model metamers but did not eliminate the overall human-model discrepancy. The human recognizability of a model's metamers was well predicted by their recognizability by other models, suggesting that models contain idiosyncratic invariances in addition to those required by the task. Metamer recognizability dissociated from both traditional brain-based benchmarks and adversarial vulnerability, revealing a distinct failure mode of existing sensory models and providing a complementary benchmark for model assessment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
然来溪完成签到 ,获得积分10
2秒前
仇敌克星完成签到,获得积分10
3秒前
龄仔仔完成签到 ,获得积分10
6秒前
过时的广山完成签到 ,获得积分10
7秒前
秋风之墩完成签到,获得积分10
8秒前
风里等你完成签到,获得积分10
8秒前
和谐诗双完成签到 ,获得积分10
11秒前
Astra完成签到,获得积分10
11秒前
邓大瓜完成签到,获得积分10
11秒前
健忘的晓小完成签到 ,获得积分10
12秒前
13秒前
芬芬完成签到 ,获得积分10
13秒前
13秒前
Loey完成签到,获得积分10
15秒前
AskNature完成签到,获得积分10
15秒前
DrPika完成签到,获得积分10
16秒前
倪小呆完成签到 ,获得积分10
17秒前
科研路上互帮互助,共同进步完成签到 ,获得积分10
17秒前
量子星尘发布了新的文献求助10
18秒前
spicyfish完成签到,获得积分10
20秒前
HopeLee完成签到,获得积分10
20秒前
llllliu发布了新的文献求助10
22秒前
认真的珠完成签到 ,获得积分10
22秒前
宝玉完成签到 ,获得积分10
22秒前
顺利的慕儿完成签到 ,获得积分10
24秒前
留猪完成签到,获得积分10
25秒前
含糊的无声完成签到 ,获得积分10
25秒前
量子星尘发布了新的文献求助10
27秒前
萨尔莫斯完成签到,获得积分10
27秒前
29秒前
29秒前
阿连发布了新的文献求助10
29秒前
zm完成签到 ,获得积分10
36秒前
英勇雅琴完成签到 ,获得积分10
40秒前
王kk完成签到 ,获得积分10
41秒前
Jerry完成签到,获得积分10
41秒前
sora完成签到,获得积分10
43秒前
pucca完成签到 ,获得积分10
45秒前
lenne完成签到,获得积分10
45秒前
ww完成签到 ,获得积分10
45秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5789382
求助须知:如何正确求助?哪些是违规求助? 5718918
关于积分的说明 15474506
捐赠科研通 4917200
什么是DOI,文献DOI怎么找? 2646840
邀请新用户注册赠送积分活动 1594493
关于科研通互助平台的介绍 1548982