An online learning method for constructing self-update digital twin model of power transformer temperature prediction

变压器 计算机科学 再培训 机器学习 人工智能 工程类 电压 电气工程 国际贸易 业务
作者
Tao Wu,Fan Yang,Umer Farooq,Xing Li,Jinyang Jiang
出处
期刊:Applied Thermal Engineering [Elsevier BV]
卷期号:237: 121728-121728 被引量:13
标识
DOI:10.1016/j.applthermaleng.2023.121728
摘要

This study was focused on predicting the temperature of power transformers, which is a critical factor affecting their reliability and efficiency. Existing methods typically use a static digital twin model for temperature prediction; however, this approach often leads to prediction failures owing to the dynamic nature of the transformer thermal process. To address this issue, an online extreme learning machine with a kernel method was proposed for constructing a digital twin model for power transformer temperature prediction. The constructed model can update itself by continuously learning the input–output relationship of new data to maintain accuracy. The experimental results show that the static digital twin model for temperature prediction gradually loses its predictive accuracy over time. In contrast, the digital twin model constructed using the proposed method had 99.8% and 98.8% prediction accuracies for two datasets. Furthermore, the proposed method learns from new samples at a speed of at least three orders of magnitude faster than existing methods for retraining the static model. Compared with the existing methods, the proposed method can effectively deal with the transformer temperature prediction under the dynamic thermal process. The results of this study can be applied to thermal management when thermal processes change dynamically.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cyy完成签到,获得积分10
1秒前
深情安青应助xiao采纳,获得10
1秒前
小马甲应助大龙哥886采纳,获得10
1秒前
欢喜黑猫完成签到,获得积分10
1秒前
徐徐完成签到,获得积分20
2秒前
飞星流发布了新的文献求助10
2秒前
柯飞扬完成签到,获得积分10
4秒前
Caroline完成签到,获得积分10
5秒前
科目三应助coolkid采纳,获得30
5秒前
紫菱星君完成签到,获得积分10
7秒前
7秒前
所所应助壮壮采纳,获得10
7秒前
龚晓博完成签到,获得积分10
8秒前
鑫渊完成签到,获得积分10
8秒前
丘比特应助瓦猫采纳,获得10
9秒前
bkagyin应助靓丽的魔镜采纳,获得10
10秒前
大气的康完成签到,获得积分10
10秒前
传奇3应助飞星流采纳,获得10
10秒前
欢喜黑猫发布了新的文献求助10
11秒前
12秒前
赖胖胖发布了新的文献求助10
12秒前
Roy完成签到,获得积分10
13秒前
刚少kk完成签到,获得积分10
13秒前
15秒前
sg完成签到 ,获得积分10
15秒前
16秒前
小螃蟹驳回了gtm应助
16秒前
zy发布了新的文献求助30
16秒前
17秒前
Hi吃了吗发布了新的文献求助10
18秒前
19秒前
19秒前
ljkshr完成签到,获得积分10
20秒前
任小萱发布了新的文献求助10
21秒前
今后应助Maestro_S采纳,获得10
21秒前
共享精神应助pipipi5200采纳,获得10
22秒前
洁净春天发布了新的文献求助10
22秒前
22秒前
23秒前
23秒前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
The organometallic chemistry of the transition metals 7th 666
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Handbook of Laboratory Animal Science 300
Fundamentals of Medical Device Regulations, Fifth Edition(e-book) 300
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3701187
求助须知:如何正确求助?哪些是违规求助? 3251544
关于积分的说明 9874989
捐赠科研通 2963549
什么是DOI,文献DOI怎么找? 1625157
邀请新用户注册赠送积分活动 769822
科研通“疑难数据库(出版商)”最低求助积分说明 742564