催化作用
甲酸
纳米棒
电化学
甘油
化学
选择性
阳极
材料科学
无机化学
化学工程
纳米技术
电极
物理化学
有机化学
工程类
作者
Ruo‐Yao Fan,Xue-Jun Zhai,Weizhen Qiao,Yusheng Zhang,Ning Yu,Na Xu,Qian‐Xi Lv,Yong‐Ming Chai,Bin Dong
出处
期刊:Nano-micro Letters
[Springer Science+Business Media]
日期:2023-07-29
卷期号:15 (1)
被引量:46
标识
DOI:10.1007/s40820-023-01159-6
摘要
Abstract Glycerol (electrochemical) oxidation reaction (GOR) producing organic small molecule acid and coupling with hydrogen evolution reaction is a critical aspect of ensuring balanced glycerol capacity and promoting hydrogen generation on a large scale. However, the development of highly efficient and selective non-noble metal-based GOR electrocatalysts is still a key problem. Here, an S-doped CuO nanorod array catalyst (S-CuO/CF) constructed by sulfur leaching and oxidative remodeling is used to drive GOR at low potentials: It requires potentials of only 1.23 and 1.33 V versus RHE to provide currents of 100 and 500 mA cm −2 , respectively. Moreover, it shows satisfactory comprehensive performance (at 100 mA cm −2 , V cell = 1.37 V) when assembled as the anode in asymmetric coupled electrolytic cell. Furthermore, we propose a detailed cycle reaction pathway (in alkaline environment) of S-doped CuO surface promoting GOR to produce formic acid and glycolic acid. Among them, the C–C bond breaking and lattice oxygen deintercalation steps frequently involved in the reaction pathway are the key factors to determine the catalytic performance and product selectivity. This research provides valuable guidance for the development of transition metal-based electrocatalysts for GOR and valuable insights into the glycerol oxidation cycle reaction pathway.
科研通智能强力驱动
Strongly Powered by AbleSci AI