电池(电)
荷电状态
估计
计算机科学
系统工程
锂(药物)
锂离子电池
可靠性工程
工程类
物理
医学
功率(物理)
量子力学
内分泌学
作者
Longxing Wu,Zhiqiang Lyu,Zebo Huang,Chao Zhang,Changyin Wei
标识
DOI:10.1016/j.jechem.2023.09.045
摘要
The reliable prediction of state of charge (SOC) is one of the vital functions of advanced battery management system (BMS), which has great significance towards safe operation of electric vehicles. By far, the empirical model-based and data-driven-based SOC estimation methods of lithium-ion batteries have been comprehensively discussed and reviewed in various literatures. However, few reviews involving SOC estimation focused on electrochemical mechanism, which gives physical explanations to SOC and becomes most attractive candidate for advanced BMS. For this reason, this paper comprehensively surveys on physics-based SOC algorithms applied in advanced BMS. First, the research progresses of physical SOC estimation methods for lithium-ion batteries are thoroughly discussed and corresponding evaluation criteria are carefully elaborated. Second, future perspectives of the current researches on physics-based battery SOC estimation are presented. The insights stated in this paper are expected to catalyze the development and application of the physics-based advanced BMS algorithms.
科研通智能强力驱动
Strongly Powered by AbleSci AI