State of the Art and Outlook of Data Science and Machine Learning in Organic Chemistry

化学 数量结构-活动关系 人工智能 领域(数学) 生化工程 纳米技术 机器学习 计算机科学 立体化学 工程类 数学 材料科学 纯数学
作者
Ricardo Stefani
出处
期刊:Current Organic Chemistry [Bentham Science]
卷期号:27 (16): 1393-1397
标识
DOI:10.2174/0113852728249020230921072236
摘要

Abstract: Data Science and Machine Learning approaches have recently expanded to accelerate the discovery of new materials, drugs, synthetic substances and automated compound identification. In the field of Organic Chemistry, Machine Learning and Data Science are commonly used to predict biological and physiochemical properties of molecules and are referred to as quantitative structure–active relationship (QSAR, for biological properties) and quantitative structure– property relationship (QSPR, for nonbiological properties). Data Science and Machine Learning applications are rapidly growing in chemistry and have been successfully applied to the discovery and optimization of molecular properties, optimization of synthesis, automated structure elucidation, and even the design of novel compounds. The main strength of Data Science tools is the ability to find patterns and relationships that even an experienced researcher may not be able to find, and research in chemistry can benefit from. Moreover, this interdisciplinary field is playing a central role in changing the way not only organic chemistry but also how chemistry is done. As cutting-edge ML tools and algorithms such as tensors, natural language processing, and transformers become mature and reliable by chemists. ML will be a routine analysis in a chemistry laboratory like any other technique or equipment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hollow完成签到,获得积分10
刚刚
风中盼易完成签到,获得积分10
刚刚
要杯热拿铁完成签到,获得积分20
刚刚
1秒前
zyt发布了新的文献求助30
1秒前
1秒前
2秒前
辛夷完成签到,获得积分10
2秒前
2秒前
洁净的老寿星完成签到,获得积分10
2秒前
风中盼易发布了新的文献求助10
2秒前
落雨青峰完成签到,获得积分10
3秒前
workwork发布了新的文献求助10
3秒前
3秒前
英俊的铭应助乐观的丹琴采纳,获得10
3秒前
灰尘精灵c应助科研通管家采纳,获得10
4秒前
天天快乐应助科研通管家采纳,获得10
4秒前
杳鸢应助科研通管家采纳,获得20
4秒前
完美世界应助科研通管家采纳,获得10
4秒前
bkagyin应助科研通管家采纳,获得10
4秒前
毛豆应助科研通管家采纳,获得10
4秒前
斯文败类应助科研通管家采纳,获得10
5秒前
脑洞疼应助科研通管家采纳,获得10
5秒前
领导范儿应助活力芝麻采纳,获得10
5秒前
毛豆应助科研通管家采纳,获得10
5秒前
5秒前
杳鸢应助科研通管家采纳,获得20
5秒前
CipherSage应助科研通管家采纳,获得30
5秒前
5秒前
5秒前
5秒前
5秒前
thinker4610发布了新的文献求助10
5秒前
佳远发布了新的文献求助10
6秒前
情怀应助77采纳,获得10
7秒前
hjw完成签到,获得积分10
7秒前
123465发布了新的文献求助10
7秒前
7秒前
a燃发布了新的文献求助10
8秒前
鹿小新发布了新的文献求助10
8秒前
高分求助中
Genetics: From Genes to Genomes 3000
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Diabetes: miniguías Asklepios 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3470791
求助须知:如何正确求助?哪些是违规求助? 3063758
关于积分的说明 9085407
捐赠科研通 2754254
什么是DOI,文献DOI怎么找? 1511347
邀请新用户注册赠送积分活动 698380
科研通“疑难数据库(出版商)”最低求助积分说明 698253