Structure engineering-enabled multi-direction-reconfigurable, soft, rechargeable lithium-ion battery with tissue-compliance low modulus and high performance

材料科学 电池(电) 复合材料 纳米技术 模数 碳纳米管 生物电子学 功率(物理) 量子力学 物理 生物传感器
作者
Chongjie Gao,Jun Ma,Wei Li,Jingjing Qiu,Shiren Wang
出处
期刊:Energy Storage Materials [Elsevier BV]
卷期号:63: 103031-103031 被引量:5
标识
DOI:10.1016/j.ensm.2023.103031
摘要

The significant demand for wearable and implantable bioelectronics necessitates high-performance power units. However, conventional batteries typically comprise rigid and bulky metals, or soft materials with conductive fillers (e.g., carbon nanotubes). These materials may induce undesired immune responses and battery failures when subjected to violent deformations due to the mismatch in mechanical properties between biological tissues (<100 kPa) and batteries. Additionally, current research on tissue-compliance soft batteries is based on the material-based low modulus and stretchability, where hydrogels are used as the elastic low modulus matrix. In this study, a structure-based low modulus electrode is developed wherein one-dimension (1D) uniaxial and two-dimension (2D) biaxial Kirigami pattern electrodes were carefully designed to provide both tissue-like modulus and multi-directional reconfigurability. The resulting reconfigurable soft battery exhibits excellent compliance and softness with Young's modulus of 64.1 kPa, which, to our knowledge, is the lowest modulus achieved for batteries with decent performance. The electrochemical performance of the reconfigurable lithium-ion soft battery under various deformations, such as stretching, bending, and twisting was investigated, and a high specific capacity of 83.5 mAh/g was achieved at a current density of 0.5 A/g under 100% stretching strain. The multi-directional stretchability, long-term stability, and biocompatibility of the reconfigurable soft battery were demonstrated. This groundbreaking work paves the way for the designing and manufacturing of soft batteries specifically tailored for wearable and implantable bioelectronics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
生命科学的第一推动力完成签到 ,获得积分10
1秒前
1秒前
Shane完成签到,获得积分10
1秒前
1秒前
Kathy完成签到,获得积分10
1秒前
山雀发布了新的文献求助10
1秒前
2秒前
hahhhhhh2完成签到,获得积分10
2秒前
12完成签到 ,获得积分10
2秒前
追光完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
sure完成签到 ,获得积分10
4秒前
Kathy发布了新的文献求助10
5秒前
zhq完成签到,获得积分20
5秒前
5秒前
丘比特应助陈艳林采纳,获得10
6秒前
chenhua5460发布了新的文献求助10
6秒前
张阳发布了新的文献求助10
7秒前
谢许杯商应助Mansis采纳,获得10
8秒前
虎啊虎啊发布了新的文献求助10
8秒前
8秒前
9秒前
szh123完成签到 ,获得积分10
9秒前
feimengxia完成签到 ,获得积分10
9秒前
wanci应助Garfieldlilac采纳,获得10
10秒前
Jasper应助像个小蛤蟆采纳,获得10
10秒前
地平完成签到,获得积分10
11秒前
丘比特应助如初采纳,获得10
11秒前
12秒前
jichao完成签到,获得积分10
12秒前
sevenseven完成签到,获得积分10
13秒前
lzg完成签到,获得积分10
13秒前
zhuxiaonian完成签到,获得积分10
13秒前
汤圆完成签到,获得积分10
14秒前
小蘑菇应助喜庆采纳,获得10
14秒前
周娅敏发布了新的文献求助10
14秒前
15秒前
sgs完成签到,获得积分10
15秒前
自行输入昵称完成签到 ,获得积分10
16秒前
戚薇发布了新的文献求助10
16秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986641
求助须知:如何正确求助?哪些是违规求助? 3529109
关于积分的说明 11243520
捐赠科研通 3267633
什么是DOI,文献DOI怎么找? 1803801
邀请新用户注册赠送积分活动 881207
科研通“疑难数据库(出版商)”最低求助积分说明 808582