Seismic risk-informed prioritisation of multi-span RC girder bridges considering knowledge-based uncertainty

地震风险 脆弱性 桥(图论) 大梁 脆弱性(计算) 地震情景 工程类 计算机科学 土木工程 风险分析(工程) 地震灾害 计算机安全 医学 化学 物理化学 内科学
作者
Andrea Nettis,Domenico Raffaele,Giuseppina Uva
出处
期刊:Bulletin of Earthquake Engineering [Springer Nature]
卷期号:22 (2): 693-729 被引量:8
标识
DOI:10.1007/s10518-023-01783-y
摘要

Abstract In earthquake-prone countries, transport network managers need to perform extensive seismic risk assessments coping with a considerable number of bridges characterised by an unsatisfying knowledge level and designed in the past without anti-seismic requirements. This study proposes a framework for efficient risk assessment of multi-span girder bridges considering knowledge-based uncertainties. The framework is intended to be applied to risk-informed prioritisation of bridge portfolios. It is based on subsequent modules that involve the input of knowledge data, the simulation of knowledge-based uncertainties, simplified seismic analysis, fragility and loss assessment. The seismic vulnerability of a given bridge is represented by loss ratio percentiles related to a given seismic intensity measure which can be used to quantify the expected annual losses and the corresponding variability due to the influence of knowledge-based uncertainty. A case-study section demonstrates the framework for the widespread category of simply supported girder-reinforced concrete bridges. It addresses issues such as the use of optimal intensity measures, the required number of model realisations and discrepancies with respect to accurate nonlinear time-history analysis. Finally, an illustrative example of the proposed framework for eight case-study bridges in Southern Italy demonstrates its applicability for seismic risk-informed prioritisation of critical bridges and for directing in-depth knowledge data collections where needed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助qi采纳,获得10
刚刚
乐乐发布了新的文献求助10
1秒前
铸一字错发布了新的文献求助10
1秒前
受伤书文完成签到,获得积分10
2秒前
Yvonne发布了新的文献求助10
2秒前
2秒前
温柔的十三完成签到,获得积分10
2秒前
Ll发布了新的文献求助10
3秒前
nikai发布了新的文献求助10
3秒前
圣晟胜发布了新的文献求助10
3秒前
大个应助科研通管家采纳,获得10
3秒前
3秒前
田様应助科研通管家采纳,获得10
3秒前
香蕉觅云应助科研通管家采纳,获得10
3秒前
李爱国应助科研通管家采纳,获得10
3秒前
Leif应助科研通管家采纳,获得10
4秒前
桐桐应助科研通管家采纳,获得10
4秒前
Owen应助科研通管家采纳,获得10
4秒前
4秒前
深情安青应助科研通管家采纳,获得10
4秒前
shouyu29应助科研通管家采纳,获得10
4秒前
4秒前
小金应助科研通管家采纳,获得20
4秒前
牛逼的昂完成签到,获得积分10
4秒前
muzi给muzi的求助进行了留言
4秒前
NexusExplorer应助科研通管家采纳,获得10
4秒前
4秒前
Jasper应助科研通管家采纳,获得10
5秒前
yuhang完成签到 ,获得积分10
5秒前
汉堡包应助科研通管家采纳,获得10
5秒前
果汁完成签到,获得积分10
5秒前
NexusExplorer应助Zoe采纳,获得10
5秒前
MADKAI发布了新的文献求助10
6秒前
6秒前
领导范儿应助junzilan采纳,获得10
7秒前
打打应助激动的一手采纳,获得10
7秒前
酷波er应助艺玲采纳,获得10
8秒前
longtengfei发布了新的文献求助10
8秒前
9秒前
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759