Homogeneous and Heterogeneous Optimization for Unsupervised Cross-Modality Person Reidentification in Visual Internet of Things

计算机科学 同种类的 模态(人机交互) 互联网 人工智能 万维网 数学 组合数学
作者
Tongzhen Si,Fazhi He,Penglei Li,Mang Ye
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (7): 12165-12176 被引量:4
标识
DOI:10.1109/jiot.2023.3332077
摘要

Cross-modality visible-infrared person reidentification (VI-ReID) has attracted widespread concern due to its scalability in 24-h video surveillance of the Visual Internet of Things (VIoT). Driven by enough annotated training data, supervised VI-ReID has achieved superior performance. However, annotating a large amount of cross-modality data is extremely time-consuming, which limits its employment in real-world scenarios. Existing several works neglect the image-level discrepancy and could not obtain reliable feature-level heterogeneous correlation. In this article, we propose a novel homogeneous and heterogeneous optimization with modality style adaptation (HHO) mechanism to eliminate intramodality and intermodality discrepancies without any label information for unsupervised VI-ReID. Specifically, we present the modality style adaptation strategy to transfer unlabeled cross-modality pedestrian styles, which not only increases the image diversity but also bridges the intermodality gap. Meanwhile, we employ the clustering algorithm to generate pseudo labels for each modality. The homogeneous feature optimization is developed to extract intramodality pedestrian features. Furthermore, we propose heterogeneous feature optimization to eliminate the intermodality discrepancy. To this end, a heterogeneous feature search (HFS) module is designed to mine reliable cross-modality signals for each identity. These reliable heterogeneous features are constrained to generate the compact feature distribution, while different identities are forced to be separated. The HHO are seamlessly integrated to learn cross-modality robust features. Abundant experiments prove the superiority of HHO, which gains superior performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在水一方应助zj杰采纳,获得10
1秒前
总之完成签到 ,获得积分10
1秒前
zhangyafei发布了新的文献求助10
2秒前
今后应助123采纳,获得10
3秒前
4秒前
我是老大应助liweiDr采纳,获得10
5秒前
6秒前
pengjiejie完成签到,获得积分10
6秒前
小小时光发布了新的文献求助10
8秒前
爱静静应助禹代秋采纳,获得10
9秒前
kkjl完成签到,获得积分10
10秒前
你好完成签到,获得积分10
11秒前
慕青应助yating采纳,获得10
11秒前
12秒前
14秒前
15秒前
17秒前
郝幻嫣发布了新的文献求助30
18秒前
18秒前
orange完成签到,获得积分10
20秒前
zj杰发布了新的文献求助10
20秒前
22秒前
fanfan完成签到,获得积分10
23秒前
卖萌的秋田完成签到 ,获得积分10
23秒前
五小发布了新的文献求助10
24秒前
25秒前
25秒前
余鱼鱼完成签到,获得积分10
26秒前
28秒前
闪闪幼南完成签到,获得积分10
30秒前
31秒前
包容的映天完成签到 ,获得积分10
31秒前
眼睛大莆发布了新的文献求助10
32秒前
晚亭应助姜sir采纳,获得10
34秒前
CodeCraft应助五小采纳,获得10
34秒前
NexusExplorer应助迅速友容采纳,获得50
37秒前
周凡淇发布了新的文献求助10
38秒前
38秒前
zy发布了新的文献求助10
39秒前
科目三应助zj杰采纳,获得10
43秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139285
求助须知:如何正确求助?哪些是违规求助? 2790137
关于积分的说明 7794105
捐赠科研通 2446563
什么是DOI,文献DOI怎么找? 1301261
科研通“疑难数据库(出版商)”最低求助积分说明 626124
版权声明 601109