Homogeneous and Heterogeneous Optimization for Unsupervised Cross-Modality Person Reidentification in Visual Internet of Things

计算机科学 同种类的 模态(人机交互) 互联网 人工智能 万维网 数学 组合数学
作者
Tongzhen Si,Fazhi He,Penglei Li,Mang Ye
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (7): 12165-12176 被引量:4
标识
DOI:10.1109/jiot.2023.3332077
摘要

Cross-modality visible-infrared person reidentification (VI-ReID) has attracted widespread concern due to its scalability in 24-h video surveillance of the Visual Internet of Things (VIoT). Driven by enough annotated training data, supervised VI-ReID has achieved superior performance. However, annotating a large amount of cross-modality data is extremely time-consuming, which limits its employment in real-world scenarios. Existing several works neglect the image-level discrepancy and could not obtain reliable feature-level heterogeneous correlation. In this article, we propose a novel homogeneous and heterogeneous optimization with modality style adaptation (HHO) mechanism to eliminate intramodality and intermodality discrepancies without any label information for unsupervised VI-ReID. Specifically, we present the modality style adaptation strategy to transfer unlabeled cross-modality pedestrian styles, which not only increases the image diversity but also bridges the intermodality gap. Meanwhile, we employ the clustering algorithm to generate pseudo labels for each modality. The homogeneous feature optimization is developed to extract intramodality pedestrian features. Furthermore, we propose heterogeneous feature optimization to eliminate the intermodality discrepancy. To this end, a heterogeneous feature search (HFS) module is designed to mine reliable cross-modality signals for each identity. These reliable heterogeneous features are constrained to generate the compact feature distribution, while different identities are forced to be separated. The HHO are seamlessly integrated to learn cross-modality robust features. Abundant experiments prove the superiority of HHO, which gains superior performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
iNk应助科研通管家采纳,获得20
刚刚
Hello应助科研通管家采纳,获得10
1秒前
缓慢如南应助科研通管家采纳,获得10
1秒前
栀夏完成签到,获得积分10
1秒前
yar应助科研通管家采纳,获得10
1秒前
桐桐应助杨杨采纳,获得10
1秒前
orixero应助科研通管家采纳,获得10
1秒前
1秒前
yar应助科研通管家采纳,获得10
1秒前
iNk应助科研通管家采纳,获得20
1秒前
脑洞疼应助科研通管家采纳,获得10
1秒前
深情安青应助科研通管家采纳,获得10
1秒前
musejie应助科研通管家采纳,获得10
1秒前
自信夜春完成签到,获得积分10
1秒前
思源应助科研通管家采纳,获得10
2秒前
JamesPei应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
六六安安完成签到,获得积分10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
华仔应助科研通管家采纳,获得10
2秒前
FashionBoy应助科研通管家采纳,获得10
2秒前
NexusExplorer应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
2秒前
时安发布了新的文献求助10
2秒前
xiaoluoluo完成签到,获得积分10
3秒前
宏hong发布了新的文献求助10
3秒前
默默魔镜完成签到,获得积分10
3秒前
张阳发布了新的文献求助10
3秒前
无糖零脂发布了新的文献求助10
3秒前
4秒前
赘婿应助tan_sg采纳,获得10
4秒前
faiting发布了新的文献求助10
4秒前
阿圆完成签到,获得积分20
4秒前
cc2064发布了新的文献求助10
4秒前
4秒前
320me666完成签到,获得积分10
5秒前
5秒前
归尘应助XS_QI采纳,获得10
5秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986641
求助须知:如何正确求助?哪些是违规求助? 3529109
关于积分的说明 11243520
捐赠科研通 3267633
什么是DOI,文献DOI怎么找? 1803801
邀请新用户注册赠送积分活动 881207
科研通“疑难数据库(出版商)”最低求助积分说明 808582