Homogeneous and Heterogeneous Optimization for Unsupervised Cross-Modality Person Reidentification in Visual Internet of Things

计算机科学 同种类的 模态(人机交互) 互联网 人工智能 万维网 数学 组合数学
作者
Tongzhen Si,Fazhi He,Penglei Li,Mang Ye
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (7): 12165-12176 被引量:4
标识
DOI:10.1109/jiot.2023.3332077
摘要

Cross-modality visible-infrared person reidentification (VI-ReID) has attracted widespread concern due to its scalability in 24-h video surveillance of the Visual Internet of Things (VIoT). Driven by enough annotated training data, supervised VI-ReID has achieved superior performance. However, annotating a large amount of cross-modality data is extremely time-consuming, which limits its employment in real-world scenarios. Existing several works neglect the image-level discrepancy and could not obtain reliable feature-level heterogeneous correlation. In this article, we propose a novel homogeneous and heterogeneous optimization with modality style adaptation (HHO) mechanism to eliminate intramodality and intermodality discrepancies without any label information for unsupervised VI-ReID. Specifically, we present the modality style adaptation strategy to transfer unlabeled cross-modality pedestrian styles, which not only increases the image diversity but also bridges the intermodality gap. Meanwhile, we employ the clustering algorithm to generate pseudo labels for each modality. The homogeneous feature optimization is developed to extract intramodality pedestrian features. Furthermore, we propose heterogeneous feature optimization to eliminate the intermodality discrepancy. To this end, a heterogeneous feature search (HFS) module is designed to mine reliable cross-modality signals for each identity. These reliable heterogeneous features are constrained to generate the compact feature distribution, while different identities are forced to be separated. The HHO are seamlessly integrated to learn cross-modality robust features. Abundant experiments prove the superiority of HHO, which gains superior performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我是老大应助宋依依采纳,获得10
1秒前
lihaha完成签到 ,获得积分10
1秒前
1秒前
婉妤完成签到 ,获得积分10
1秒前
诸青梦完成签到 ,获得积分10
2秒前
3秒前
风清扬发布了新的文献求助10
4秒前
独特的凝云完成签到 ,获得积分10
5秒前
5秒前
小党完成签到,获得积分10
5秒前
宋一丹发布了新的文献求助10
6秒前
JamesPei应助dddyrrrrr采纳,获得10
6秒前
lmy完成签到 ,获得积分10
6秒前
寂寞的诗云完成签到,获得积分10
6秒前
轻松鸿煊发布了新的文献求助10
7秒前
7秒前
北还北发布了新的文献求助10
7秒前
8秒前
9秒前
10秒前
量子星尘发布了新的文献求助10
11秒前
flysky120完成签到,获得积分10
12秒前
温暖的德地完成签到,获得积分10
12秒前
Hug关闭了Hug文献求助
14秒前
14秒前
xiaorain完成签到,获得积分10
14秒前
14秒前
suiqing发布了新的文献求助10
15秒前
Lialia完成签到 ,获得积分10
15秒前
书晨发布了新的文献求助30
15秒前
M先生完成签到,获得积分10
16秒前
怡然的蚂蚁完成签到 ,获得积分10
18秒前
酷酷的如波完成签到 ,获得积分10
19秒前
正直的念梦完成签到,获得积分10
19秒前
ZZH完成签到,获得积分10
20秒前
jiao完成签到,获得积分10
21秒前
田様应助yolo采纳,获得10
21秒前
无极微光应助董兴宇采纳,获得20
21秒前
luokm完成签到,获得积分10
21秒前
LLL完成签到,获得积分10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5418830
求助须知:如何正确求助?哪些是违规求助? 4534433
关于积分的说明 14144216
捐赠科研通 4450723
什么是DOI,文献DOI怎么找? 2441331
邀请新用户注册赠送积分活动 1433062
关于科研通互助平台的介绍 1410502