已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

The quest for GRACE 3.0: improving our beloved risk score with machine learning

医学 急性冠脉综合征 逻辑回归 接收机工作特性 判别式 内科学 弗雷明翰风险评分 心肌梗塞 曲线下面积 推导 回顾性队列研究 心脏病学 人工智能 疾病 计算机科学 动脉
作者
José Pedro Sousa,Aldo Â. M. Lima,Paulo Gil,J. Henriques,Lino Gonçalves
出处
期刊:European Heart Journal [Oxford University Press]
卷期号:42 (Supplement_1)
标识
DOI:10.1093/eurheartj/ehab724.1094
摘要

Abstract Background Although widely recommended for risk assessment of patients with acute coronary syndrome (ACS), the Global Registry of Acute Coronary Events (GRACE) score famously lacks discriminative power. On the other hand, in-hospital serum hemoglobin levels (HG) have been shown to simultaneously forecast both thrombotic and hemorrhagic hazards. Purpose To ascertain the extent to which the incorporation of HG in the GRACE score is able to increase its predictive ability. Methods Retrospective single-center study encompassing ACS patients consecutively admitted to a Cardiac Intensive Care Unit. Inclusion criteria comprised the acquaintance of GRACE score, HG and vital status on a 6-month follow-up, which served as the outcome. 3 discriminative models were first created: (standard) GRACE score (model 1); GRACE score plus HG, by means of logistic regression (model 2); GRACE score plus HG, by means of multilayer perceptron (a class of feedforward artificial neural network) (model 3). Hereafter, if models 2 and/or 3 were to be found significantly more discriminative than model 1, a correction factor would be calculated, also allowing for the conception of the most predictive model possible (model 4). The discriminative ability was estimated by both the area under the receiver-operating characteristic curve (AUC), and the dyad sensitivity/specificity. Results Between April 2009 and December 2016, 1468 patients met study inclusion criteria. Mean age was 68.0±13.2 years and 29.8% were female, while 36.9% presented with ST-segment elevation myocardial infarction. Mean GRACE score was 145.5±47.0 and mean HG was 13.5±2.0. All-cause mortality reached 10.5%, at 6 months. Predictive power for models 1, 2 and 3 may be quantified as follows: AUC 0.6998, sensitivity 77.7% and specificity 62.5%; AUC 0.7818, sensitivity 36.3% and specificity 92.2%; AUC 0.7851, sensitivity 47.7% and specificity 88.5%, respectively. Both models 2 and 3 exhibited more discriminative ability than model 1 (p<0.001), due to their higher specificity. As such, a correction factor was computed (y = −7.8556x + 86.4117) and model 4 was created, displaying a sensitivity of 65.9% and a specificity of 76.5%. Conclusion HG single-handedly provides incremental predictive value – namely more specificity – to the GRACE score. In particular, the latter seems to overestimate ACS patients' risk if HG is normal or close to normal. Funding Acknowledgement Type of funding sources: None.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yebk完成签到,获得积分10
3秒前
沉静丹寒发布了新的文献求助10
3秒前
俭朴听双完成签到,获得积分10
3秒前
li完成签到 ,获得积分10
4秒前
6秒前
淡然丹寒完成签到 ,获得积分10
8秒前
8秒前
11秒前
11秒前
走走发布了新的文献求助10
12秒前
鞋子完成签到 ,获得积分10
12秒前
O已w时o完成签到 ,获得积分10
13秒前
hhh完成签到,获得积分10
14秒前
mumu发布了新的文献求助10
16秒前
华仔应助走走采纳,获得10
18秒前
充电宝应助wxsmy采纳,获得30
18秒前
外向初蓝发布了新的文献求助20
19秒前
AAA完成签到,获得积分10
20秒前
lucky完成签到 ,获得积分10
22秒前
快乐的寄容完成签到 ,获得积分10
25秒前
科研通AI6应助缓慢宛海采纳,获得10
25秒前
25秒前
25秒前
拉长的南松完成签到 ,获得积分10
28秒前
怕孤单的幼荷完成签到 ,获得积分10
28秒前
王灰灰1完成签到 ,获得积分10
28秒前
30秒前
31秒前
34秒前
35秒前
YifanWang应助爱学习的小白采纳,获得10
36秒前
39秒前
顾矜应助喬老師采纳,获得10
39秒前
40秒前
41秒前
Hello应助满意妙梦采纳,获得10
42秒前
科研通AI6应助研友_ZeoqYL采纳,获得10
43秒前
yuanyuan发布了新的文献求助10
45秒前
gaoyang完成签到,获得积分10
45秒前
酷波er应助l123采纳,获得10
46秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599516
求助须知:如何正确求助?哪些是违规求助? 4685187
关于积分的说明 14838060
捐赠科研通 4668727
什么是DOI,文献DOI怎么找? 2538015
邀请新用户注册赠送积分活动 1505447
关于科研通互助平台的介绍 1470804