亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

The quest for GRACE 3.0: improving our beloved risk score with machine learning

医学 急性冠脉综合征 逻辑回归 接收机工作特性 判别式 内科学 弗雷明翰风险评分 心肌梗塞 曲线下面积 推导 回顾性队列研究 心脏病学 人工智能 疾病 计算机科学 动脉
作者
José Pedro Sousa,Aldo Â. M. Lima,Paulo Gil,J. Henriques,Lino Gonçalves
出处
期刊:European Heart Journal [Oxford University Press]
卷期号:42 (Supplement_1)
标识
DOI:10.1093/eurheartj/ehab724.1094
摘要

Abstract Background Although widely recommended for risk assessment of patients with acute coronary syndrome (ACS), the Global Registry of Acute Coronary Events (GRACE) score famously lacks discriminative power. On the other hand, in-hospital serum hemoglobin levels (HG) have been shown to simultaneously forecast both thrombotic and hemorrhagic hazards. Purpose To ascertain the extent to which the incorporation of HG in the GRACE score is able to increase its predictive ability. Methods Retrospective single-center study encompassing ACS patients consecutively admitted to a Cardiac Intensive Care Unit. Inclusion criteria comprised the acquaintance of GRACE score, HG and vital status on a 6-month follow-up, which served as the outcome. 3 discriminative models were first created: (standard) GRACE score (model 1); GRACE score plus HG, by means of logistic regression (model 2); GRACE score plus HG, by means of multilayer perceptron (a class of feedforward artificial neural network) (model 3). Hereafter, if models 2 and/or 3 were to be found significantly more discriminative than model 1, a correction factor would be calculated, also allowing for the conception of the most predictive model possible (model 4). The discriminative ability was estimated by both the area under the receiver-operating characteristic curve (AUC), and the dyad sensitivity/specificity. Results Between April 2009 and December 2016, 1468 patients met study inclusion criteria. Mean age was 68.0±13.2 years and 29.8% were female, while 36.9% presented with ST-segment elevation myocardial infarction. Mean GRACE score was 145.5±47.0 and mean HG was 13.5±2.0. All-cause mortality reached 10.5%, at 6 months. Predictive power for models 1, 2 and 3 may be quantified as follows: AUC 0.6998, sensitivity 77.7% and specificity 62.5%; AUC 0.7818, sensitivity 36.3% and specificity 92.2%; AUC 0.7851, sensitivity 47.7% and specificity 88.5%, respectively. Both models 2 and 3 exhibited more discriminative ability than model 1 (p<0.001), due to their higher specificity. As such, a correction factor was computed (y = −7.8556x + 86.4117) and model 4 was created, displaying a sensitivity of 65.9% and a specificity of 76.5%. Conclusion HG single-handedly provides incremental predictive value – namely more specificity – to the GRACE score. In particular, the latter seems to overestimate ACS patients' risk if HG is normal or close to normal. Funding Acknowledgement Type of funding sources: None.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
马俊完成签到,获得积分10
9秒前
11秒前
yue完成签到 ,获得积分10
13秒前
wangwangxiao完成签到 ,获得积分10
13秒前
18秒前
18秒前
21秒前
小凯完成签到,获得积分10
22秒前
是个哑巴发布了新的文献求助10
22秒前
23秒前
党弛发布了新的文献求助10
25秒前
洁净的钢笔完成签到 ,获得积分10
29秒前
酷酷问夏完成签到 ,获得积分10
30秒前
43秒前
所所应助Mengzhen Du采纳,获得10
48秒前
Ava应助党弛采纳,获得10
57秒前
Andrewlabeth完成签到 ,获得积分10
1分钟前
酒尚温完成签到 ,获得积分10
1分钟前
敏感的莫言完成签到 ,获得积分10
1分钟前
1分钟前
科研通AI6应助SF2768采纳,获得10
1分钟前
Mengzhen Du发布了新的文献求助10
1分钟前
1分钟前
1分钟前
Wayne完成签到 ,获得积分10
1分钟前
1分钟前
hqq完成签到,获得积分10
1分钟前
Rainsky完成签到 ,获得积分10
1分钟前
1分钟前
fhg完成签到 ,获得积分10
1分钟前
cy发布了新的文献求助10
1分钟前
wanci应助科研通管家采纳,获得10
1分钟前
1分钟前
爆米花应助科研通管家采纳,获得10
1分钟前
善学以致用应助cxy采纳,获得10
1分钟前
cy完成签到,获得积分10
1分钟前
1分钟前
典雅媚颜完成签到,获得积分20
1分钟前
1分钟前
潜行者完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Research Handbook on Social Interaction 1000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5657824
求助须知:如何正确求助?哪些是违规求助? 4812668
关于积分的说明 15080373
捐赠科研通 4816006
什么是DOI,文献DOI怎么找? 2577043
邀请新用户注册赠送积分活动 1532043
关于科研通互助平台的介绍 1490584