The quest for GRACE 3.0: improving our beloved risk score with machine learning

医学 急性冠脉综合征 逻辑回归 接收机工作特性 判别式 内科学 弗雷明翰风险评分 心肌梗塞 曲线下面积 推导 回顾性队列研究 心脏病学 人工智能 疾病 计算机科学 动脉
作者
José Pedro Sousa,Aldo Â. M. Lima,Paulo Gil,J. Henriques,Lino Gonçalves
出处
期刊:European Heart Journal [Oxford University Press]
卷期号:42 (Supplement_1)
标识
DOI:10.1093/eurheartj/ehab724.1094
摘要

Abstract Background Although widely recommended for risk assessment of patients with acute coronary syndrome (ACS), the Global Registry of Acute Coronary Events (GRACE) score famously lacks discriminative power. On the other hand, in-hospital serum hemoglobin levels (HG) have been shown to simultaneously forecast both thrombotic and hemorrhagic hazards. Purpose To ascertain the extent to which the incorporation of HG in the GRACE score is able to increase its predictive ability. Methods Retrospective single-center study encompassing ACS patients consecutively admitted to a Cardiac Intensive Care Unit. Inclusion criteria comprised the acquaintance of GRACE score, HG and vital status on a 6-month follow-up, which served as the outcome. 3 discriminative models were first created: (standard) GRACE score (model 1); GRACE score plus HG, by means of logistic regression (model 2); GRACE score plus HG, by means of multilayer perceptron (a class of feedforward artificial neural network) (model 3). Hereafter, if models 2 and/or 3 were to be found significantly more discriminative than model 1, a correction factor would be calculated, also allowing for the conception of the most predictive model possible (model 4). The discriminative ability was estimated by both the area under the receiver-operating characteristic curve (AUC), and the dyad sensitivity/specificity. Results Between April 2009 and December 2016, 1468 patients met study inclusion criteria. Mean age was 68.0±13.2 years and 29.8% were female, while 36.9% presented with ST-segment elevation myocardial infarction. Mean GRACE score was 145.5±47.0 and mean HG was 13.5±2.0. All-cause mortality reached 10.5%, at 6 months. Predictive power for models 1, 2 and 3 may be quantified as follows: AUC 0.6998, sensitivity 77.7% and specificity 62.5%; AUC 0.7818, sensitivity 36.3% and specificity 92.2%; AUC 0.7851, sensitivity 47.7% and specificity 88.5%, respectively. Both models 2 and 3 exhibited more discriminative ability than model 1 (p<0.001), due to their higher specificity. As such, a correction factor was computed (y = −7.8556x + 86.4117) and model 4 was created, displaying a sensitivity of 65.9% and a specificity of 76.5%. Conclusion HG single-handedly provides incremental predictive value – namely more specificity – to the GRACE score. In particular, the latter seems to overestimate ACS patients' risk if HG is normal or close to normal. Funding Acknowledgement Type of funding sources: None.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
WEAWEA发布了新的文献求助10
1秒前
于豪杰完成签到,获得积分10
1秒前
hbpu230701发布了新的文献求助10
3秒前
4秒前
DD发布了新的文献求助10
4秒前
4秒前
JM完成签到,获得积分10
4秒前
慕青应助满意紫丝采纳,获得10
4秒前
安静的毛豆完成签到,获得积分20
5秒前
情怀应助文右三采纳,获得10
5秒前
优秀思卉发布了新的文献求助30
6秒前
7秒前
冯前浪完成签到,获得积分20
8秒前
木木木发布了新的文献求助10
9秒前
9秒前
11秒前
11秒前
QDU应助第五个完全数采纳,获得20
11秒前
tiptip应助李里哩采纳,获得10
12秒前
SciGPT应助李里哩采纳,获得10
12秒前
12秒前
周繁发布了新的文献求助10
12秒前
优秀思卉完成签到,获得积分10
12秒前
大气的苠完成签到,获得积分10
13秒前
Hello应助科研鲁宾孙采纳,获得10
13秒前
赘婿应助冯前浪采纳,获得30
14秒前
ZJFL发布了新的文献求助10
14秒前
14秒前
酒剑仙完成签到,获得积分10
15秒前
一一发布了新的文献求助10
15秒前
16秒前
16秒前
17秒前
18秒前
Auditor发布了新的文献求助10
19秒前
CodeCraft应助帅气航空采纳,获得10
20秒前
20秒前
Awei完成签到,获得积分10
21秒前
小桶爸爸发布了新的文献求助10
21秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694691
求助须知:如何正确求助?哪些是违规求助? 5098273
关于积分的说明 15214299
捐赠科研通 4851210
什么是DOI,文献DOI怎么找? 2602193
邀请新用户注册赠送积分活动 1554073
关于科研通互助平台的介绍 1511978