The quest for GRACE 3.0: improving our beloved risk score with machine learning

医学 急性冠脉综合征 逻辑回归 接收机工作特性 判别式 内科学 弗雷明翰风险评分 心肌梗塞 曲线下面积 推导 回顾性队列研究 心脏病学 人工智能 疾病 计算机科学 动脉
作者
José Pedro Sousa,Aldo Â. M. Lima,Paulo Gil,J. Henriques,Lino Gonçalves
出处
期刊:European Heart Journal [Oxford University Press]
卷期号:42 (Supplement_1)
标识
DOI:10.1093/eurheartj/ehab724.1094
摘要

Abstract Background Although widely recommended for risk assessment of patients with acute coronary syndrome (ACS), the Global Registry of Acute Coronary Events (GRACE) score famously lacks discriminative power. On the other hand, in-hospital serum hemoglobin levels (HG) have been shown to simultaneously forecast both thrombotic and hemorrhagic hazards. Purpose To ascertain the extent to which the incorporation of HG in the GRACE score is able to increase its predictive ability. Methods Retrospective single-center study encompassing ACS patients consecutively admitted to a Cardiac Intensive Care Unit. Inclusion criteria comprised the acquaintance of GRACE score, HG and vital status on a 6-month follow-up, which served as the outcome. 3 discriminative models were first created: (standard) GRACE score (model 1); GRACE score plus HG, by means of logistic regression (model 2); GRACE score plus HG, by means of multilayer perceptron (a class of feedforward artificial neural network) (model 3). Hereafter, if models 2 and/or 3 were to be found significantly more discriminative than model 1, a correction factor would be calculated, also allowing for the conception of the most predictive model possible (model 4). The discriminative ability was estimated by both the area under the receiver-operating characteristic curve (AUC), and the dyad sensitivity/specificity. Results Between April 2009 and December 2016, 1468 patients met study inclusion criteria. Mean age was 68.0±13.2 years and 29.8% were female, while 36.9% presented with ST-segment elevation myocardial infarction. Mean GRACE score was 145.5±47.0 and mean HG was 13.5±2.0. All-cause mortality reached 10.5%, at 6 months. Predictive power for models 1, 2 and 3 may be quantified as follows: AUC 0.6998, sensitivity 77.7% and specificity 62.5%; AUC 0.7818, sensitivity 36.3% and specificity 92.2%; AUC 0.7851, sensitivity 47.7% and specificity 88.5%, respectively. Both models 2 and 3 exhibited more discriminative ability than model 1 (p<0.001), due to their higher specificity. As such, a correction factor was computed (y = −7.8556x + 86.4117) and model 4 was created, displaying a sensitivity of 65.9% and a specificity of 76.5%. Conclusion HG single-handedly provides incremental predictive value – namely more specificity – to the GRACE score. In particular, the latter seems to overestimate ACS patients' risk if HG is normal or close to normal. Funding Acknowledgement Type of funding sources: None.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
忆Y完成签到,获得积分10
1秒前
长情咖啡豆完成签到,获得积分10
1秒前
zfd完成签到,获得积分10
1秒前
normankasimodo完成签到,获得积分10
1秒前
changaipei发布了新的文献求助10
1秒前
一一完成签到,获得积分10
1秒前
1秒前
阿辉完成签到,获得积分10
2秒前
负责惊蛰完成签到 ,获得积分10
2秒前
简单完成签到 ,获得积分10
2秒前
可爱的函函应助sunzyu采纳,获得10
2秒前
SY发布了新的文献求助10
2秒前
赘婿应助yy111采纳,获得30
2秒前
量子星尘发布了新的文献求助10
2秒前
可靠的冰萍完成签到 ,获得积分10
3秒前
Yang完成签到,获得积分10
3秒前
QJZ完成签到 ,获得积分10
4秒前
SharonDu完成签到 ,获得积分10
4秒前
Nikki发布了新的文献求助10
4秒前
壮观的夏云完成签到,获得积分10
4秒前
爆米花应助沉静的煎蛋采纳,获得10
4秒前
doctor fighting完成签到,获得积分10
5秒前
李Li完成签到,获得积分10
5秒前
5秒前
烂漫的衬衫完成签到,获得积分10
6秒前
大个应助空海采纳,获得10
6秒前
6秒前
斯文败类应助xcy采纳,获得10
6秒前
苏苏完成签到,获得积分10
6秒前
6秒前
寒冷自行车完成签到,获得积分20
6秒前
隐形曼青应助林晚停采纳,获得10
7秒前
7秒前
xfxx发布了新的文献求助10
8秒前
lvlv完成签到,获得积分10
8秒前
shiye发布了新的文献求助20
8秒前
kkkkkkkk发布了新的文献求助10
8秒前
qq发布了新的文献求助10
8秒前
李文龙完成签到,获得积分10
9秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5699262
求助须知:如何正确求助?哪些是违规求助? 5129994
关于积分的说明 15225198
捐赠科研通 4854268
什么是DOI,文献DOI怎么找? 2604550
邀请新用户注册赠送积分活动 1556014
关于科研通互助平台的介绍 1514297