The quest for GRACE 3.0: improving our beloved risk score with machine learning

医学 急性冠脉综合征 逻辑回归 接收机工作特性 判别式 内科学 弗雷明翰风险评分 心肌梗塞 曲线下面积 推导 回顾性队列研究 心脏病学 人工智能 疾病 计算机科学 动脉
作者
José Pedro Sousa,Aldo Â. M. Lima,Paulo Gil,J. Henriques,Lino Gonçalves
出处
期刊:European Heart Journal [Oxford University Press]
卷期号:42 (Supplement_1)
标识
DOI:10.1093/eurheartj/ehab724.1094
摘要

Abstract Background Although widely recommended for risk assessment of patients with acute coronary syndrome (ACS), the Global Registry of Acute Coronary Events (GRACE) score famously lacks discriminative power. On the other hand, in-hospital serum hemoglobin levels (HG) have been shown to simultaneously forecast both thrombotic and hemorrhagic hazards. Purpose To ascertain the extent to which the incorporation of HG in the GRACE score is able to increase its predictive ability. Methods Retrospective single-center study encompassing ACS patients consecutively admitted to a Cardiac Intensive Care Unit. Inclusion criteria comprised the acquaintance of GRACE score, HG and vital status on a 6-month follow-up, which served as the outcome. 3 discriminative models were first created: (standard) GRACE score (model 1); GRACE score plus HG, by means of logistic regression (model 2); GRACE score plus HG, by means of multilayer perceptron (a class of feedforward artificial neural network) (model 3). Hereafter, if models 2 and/or 3 were to be found significantly more discriminative than model 1, a correction factor would be calculated, also allowing for the conception of the most predictive model possible (model 4). The discriminative ability was estimated by both the area under the receiver-operating characteristic curve (AUC), and the dyad sensitivity/specificity. Results Between April 2009 and December 2016, 1468 patients met study inclusion criteria. Mean age was 68.0±13.2 years and 29.8% were female, while 36.9% presented with ST-segment elevation myocardial infarction. Mean GRACE score was 145.5±47.0 and mean HG was 13.5±2.0. All-cause mortality reached 10.5%, at 6 months. Predictive power for models 1, 2 and 3 may be quantified as follows: AUC 0.6998, sensitivity 77.7% and specificity 62.5%; AUC 0.7818, sensitivity 36.3% and specificity 92.2%; AUC 0.7851, sensitivity 47.7% and specificity 88.5%, respectively. Both models 2 and 3 exhibited more discriminative ability than model 1 (p<0.001), due to their higher specificity. As such, a correction factor was computed (y = −7.8556x + 86.4117) and model 4 was created, displaying a sensitivity of 65.9% and a specificity of 76.5%. Conclusion HG single-handedly provides incremental predictive value – namely more specificity – to the GRACE score. In particular, the latter seems to overestimate ACS patients' risk if HG is normal or close to normal. Funding Acknowledgement Type of funding sources: None.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
2秒前
dds完成签到,获得积分10
2秒前
机智毛豆完成签到,获得积分10
2秒前
gegi发布了新的文献求助10
3秒前
4秒前
iuhgnor完成签到,获得积分10
4秒前
4秒前
Fiona完成签到 ,获得积分10
5秒前
感动的老虎完成签到,获得积分10
6秒前
Criminology34应助自觉松采纳,获得10
6秒前
健忘捕完成签到 ,获得积分10
7秒前
8秒前
叶子发布了新的文献求助10
8秒前
9秒前
昀松完成签到,获得积分10
9秒前
10秒前
单薄月饼完成签到,获得积分10
13秒前
14秒前
15秒前
萝卜仙儿完成签到,获得积分10
16秒前
kkk完成签到,获得积分10
17秒前
孙一完成签到,获得积分10
17秒前
平常的青荷完成签到,获得积分10
17秒前
sunnyqqz完成签到,获得积分10
17秒前
小黑完成签到,获得积分10
17秒前
量子星尘发布了新的文献求助10
18秒前
星愿发布了新的文献求助10
18秒前
无花果应助red采纳,获得10
21秒前
ltc完成签到,获得积分10
22秒前
苗条而大河完成签到,获得积分10
22秒前
23秒前
lemon完成签到,获得积分10
23秒前
甜美的含之完成签到,获得积分10
24秒前
史迪仔完成签到,获得积分10
24秒前
韶邑完成签到,获得积分10
25秒前
ym完成签到 ,获得积分10
25秒前
秋田猫发布了新的文献求助10
26秒前
张张发布了新的文献求助10
26秒前
Progie应助星愿采纳,获得30
26秒前
小屁孩完成签到,获得积分10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5427010
求助须知:如何正确求助?哪些是违规求助? 4540570
关于积分的说明 14172664
捐赠科研通 4458481
什么是DOI,文献DOI怎么找? 2445033
邀请新用户注册赠送积分活动 1436101
关于科研通互助平台的介绍 1413645