亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Impact of intelligent transformation on the green innovation quality of Chinese enterprises: evidence from corporate green patent citation data

面板数据 质量(理念) 业务 背景(考古学) 产业组织 大数据 绿色增长 实证研究 知识管理 营销 计算机科学 经济 可持续发展 数据挖掘 生物 认识论 哲学 计量经济学 古生物学 法学 政治学
作者
Feng Han,Xin Mao
出处
期刊:Applied Economics [Informa]
卷期号:56 (45): 5342-5359 被引量:24
标识
DOI:10.1080/00036846.2023.2244256
摘要

ABSTRACTIn the context of the rapid integration of artificial intelligence and the real economy, exploring the effects of intelligent transformation on the quality of green innovation in enterprises is of great practical significance. Therefore, this study aimed to identify the impact mechanism of intelligent transformation on the green innovation quality of enterprises based on panel data of listed enterprises in China from 2007–2019. We found that intelligent transformation promotes the improvement of corporate green innovation quality, and the results were robust. Furthermore, intelligent transformation improves the green innovation quality of enterprises through the mediating effects of human capital, research and development expenditure, information sharing effect and factor allocation efficiency. The development of the Internet, the implementation of the National Big Data Comprehensive Pilot Zone and the Broadband China strategy have all strengthened the green innovation quality improvement effect of intelligent transformation. The green innovation quality enhancement effect of intelligent transformation is heterogenous with regard to region, industry factor intensity, industry pollution level and enterprise ownership. Finally, this study provides important policy implications based on its empirical results. Future research should develop more suitable and comprehensive indicators, and focus on the latest data acquisition status to ensure timeliness.KEYWORDS: Intelligent transformationcorporate green innovation qualityartificial intelligencegreen innovationJEL CLASSIFICATION: I10O14O33 AcknowledgmentsThe authors take sole responsibility for all the views and opinions expressed in the paper.Disclosure statementNo potential conflict of interest was reported by the author(s).Data availability statementThe participants of this study did not give written consent for their data to be shared publicly, so due to the sensitive nature of the research supporting data is not available.Notes1 Due to the limited space, the detailed introduction of the dependent variable is shown in Appendix A in the datasets on line or can be obtained from the authors.2 Due to the limited space, the reason why the robot data published by IFR is not selected as the intelligentisation indicator is shown in Appendix B in the datasets on line or can be obtained from the authors.3 Due to the limited space, the specific keywords related to enterprise intelligentisation are shown in Appendix C in the datasets on line or can be obtained from the authors.4 Due to the limited space, the specific processing of the samples is presented in Appendix F in the datasets on line or can be obtained from the authors.5 In the Hausman test, the statistic value is 8864.72, and the P value is 0.0000.6 This study adopts the cluster-robust standard error at the enterprise level.7 Due to the limited space, the detailed presentation of the KV index is presented in Appendix G in the datasets on line or can be obtained from the authors.8 The data of net fixed assets express capital input; labour input is expressed by the total number of employees of the enterprise; total output is expressed by the data of the enterprise's main business revenue.9 The main environment-related terms used in this study are environmental protection, energy consumption, pollution, environmental protection, emission reduction, green, emission, low carbon, air quality, chemical oxygen demand, carbon dioxide, fine particulate matter, PM2.5, PM10 and sulphur dioxide.Additional informationFundingThis research was funded by the National Natural Science Foundation of China [Grant No. 72073071], the Qing Lan Project of Jiangsu Province [Grant No. D202062045], and the Postgraduate Research & Practice Innovation Program of Jiangsu Province [Grant No. KYCX22_2109].
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
Criminology34应助科研通管家采纳,获得10
28秒前
Criminology34应助科研通管家采纳,获得10
28秒前
57秒前
1分钟前
nikuisi完成签到,获得积分10
1分钟前
jyy发布了新的文献求助200
1分钟前
2分钟前
wrl2023完成签到,获得积分10
2分钟前
2分钟前
af完成签到,获得积分10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
zxcvvbb1001完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nonlinear Problems of Elasticity 3000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 1000
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5534320
求助须知:如何正确求助?哪些是违规求助? 4622348
关于积分的说明 14582560
捐赠科研通 4562573
什么是DOI,文献DOI怎么找? 2500254
邀请新用户注册赠送积分活动 1479794
关于科研通互助平台的介绍 1450972