亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Impact of intelligent transformation on the green innovation quality of Chinese enterprises: evidence from corporate green patent citation data

面板数据 质量(理念) 业务 背景(考古学) 产业组织 大数据 绿色增长 实证研究 知识管理 营销 计算机科学 经济 可持续发展 数据挖掘 古生物学 哲学 认识论 计量经济学 生物 政治学 法学
作者
Feng Han,Xin Mao
出处
期刊:Applied Economics [Taylor & Francis]
卷期号:: 1-18 被引量:11
标识
DOI:10.1080/00036846.2023.2244256
摘要

ABSTRACTIn the context of the rapid integration of artificial intelligence and the real economy, exploring the effects of intelligent transformation on the quality of green innovation in enterprises is of great practical significance. Therefore, this study aimed to identify the impact mechanism of intelligent transformation on the green innovation quality of enterprises based on panel data of listed enterprises in China from 2007–2019. We found that intelligent transformation promotes the improvement of corporate green innovation quality, and the results were robust. Furthermore, intelligent transformation improves the green innovation quality of enterprises through the mediating effects of human capital, research and development expenditure, information sharing effect and factor allocation efficiency. The development of the Internet, the implementation of the National Big Data Comprehensive Pilot Zone and the Broadband China strategy have all strengthened the green innovation quality improvement effect of intelligent transformation. The green innovation quality enhancement effect of intelligent transformation is heterogenous with regard to region, industry factor intensity, industry pollution level and enterprise ownership. Finally, this study provides important policy implications based on its empirical results. Future research should develop more suitable and comprehensive indicators, and focus on the latest data acquisition status to ensure timeliness.KEYWORDS: Intelligent transformationcorporate green innovation qualityartificial intelligencegreen innovationJEL CLASSIFICATION: I10O14O33 AcknowledgmentsThe authors take sole responsibility for all the views and opinions expressed in the paper.Disclosure statementNo potential conflict of interest was reported by the author(s).Data availability statementThe participants of this study did not give written consent for their data to be shared publicly, so due to the sensitive nature of the research supporting data is not available.Notes1 Due to the limited space, the detailed introduction of the dependent variable is shown in Appendix A in the datasets on line or can be obtained from the authors.2 Due to the limited space, the reason why the robot data published by IFR is not selected as the intelligentisation indicator is shown in Appendix B in the datasets on line or can be obtained from the authors.3 Due to the limited space, the specific keywords related to enterprise intelligentisation are shown in Appendix C in the datasets on line or can be obtained from the authors.4 Due to the limited space, the specific processing of the samples is presented in Appendix F in the datasets on line or can be obtained from the authors.5 In the Hausman test, the statistic value is 8864.72, and the P value is 0.0000.6 This study adopts the cluster-robust standard error at the enterprise level.7 Due to the limited space, the detailed presentation of the KV index is presented in Appendix G in the datasets on line or can be obtained from the authors.8 The data of net fixed assets express capital input; labour input is expressed by the total number of employees of the enterprise; total output is expressed by the data of the enterprise's main business revenue.9 The main environment-related terms used in this study are environmental protection, energy consumption, pollution, environmental protection, emission reduction, green, emission, low carbon, air quality, chemical oxygen demand, carbon dioxide, fine particulate matter, PM2.5, PM10 and sulphur dioxide.Additional informationFundingThis research was funded by the National Natural Science Foundation of China [Grant No. 72073071], the Qing Lan Project of Jiangsu Province [Grant No. D202062045], and the Postgraduate Research & Practice Innovation Program of Jiangsu Province [Grant No. KYCX22_2109].
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
飞快的孱发布了新的文献求助10
2秒前
8秒前
小二郎应助幽默安珊采纳,获得10
9秒前
无名发布了新的文献求助10
11秒前
12秒前
18秒前
魁梧的鲂发布了新的文献求助10
19秒前
幽默安珊发布了新的文献求助10
24秒前
幽默安珊完成签到,获得积分20
34秒前
Owen应助jichenzhang2024采纳,获得10
40秒前
40秒前
西红柿有饭吃吗完成签到,获得积分10
43秒前
研友_VZG7GZ应助胖胖猪采纳,获得10
45秒前
45秒前
52秒前
muhum完成签到 ,获得积分10
56秒前
胖胖猪发布了新的文献求助10
58秒前
1分钟前
99253761发布了新的文献求助10
1分钟前
魁梧的鲂完成签到,获得积分10
1分钟前
香蕉觅云应助聪明熊猫采纳,获得10
1分钟前
2分钟前
飞快的孱发布了新的文献求助10
2分钟前
无花果应助橘子味汽水采纳,获得10
2分钟前
PAIDAXXXX完成签到,获得积分10
2分钟前
初晴完成签到 ,获得积分10
2分钟前
2分钟前
xiaopu完成签到,获得积分10
3分钟前
AWESOME Ling完成签到 ,获得积分10
3分钟前
3分钟前
h0jian09完成签到,获得积分10
4分钟前
4分钟前
Daniel发布了新的文献求助200
4分钟前
丘比特应助呜呼采纳,获得10
4分钟前
4分钟前
呜呼发布了新的文献求助10
4分钟前
hahahan完成签到 ,获得积分10
5分钟前
呜呼完成签到,获得积分20
5分钟前
5分钟前
mujinluo完成签到 ,获得积分10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4626052
求助须知:如何正确求助?哪些是违规求助? 4025071
关于积分的说明 12458351
捐赠科研通 3710275
什么是DOI,文献DOI怎么找? 2046526
邀请新用户注册赠送积分活动 1078482
科研通“疑难数据库(出版商)”最低求助积分说明 960950