Impact of intelligent transformation on the green innovation quality of Chinese enterprises: evidence from corporate green patent citation data

面板数据 质量(理念) 业务 背景(考古学) 产业组织 大数据 绿色增长 实证研究 知识管理 营销 计算机科学 经济 可持续发展 数据挖掘 生物 认识论 哲学 计量经济学 古生物学 法学 政治学
作者
Feng Han,Xin Mao
出处
期刊:Applied Economics [Informa]
卷期号:: 1-18 被引量:9
标识
DOI:10.1080/00036846.2023.2244256
摘要

ABSTRACTIn the context of the rapid integration of artificial intelligence and the real economy, exploring the effects of intelligent transformation on the quality of green innovation in enterprises is of great practical significance. Therefore, this study aimed to identify the impact mechanism of intelligent transformation on the green innovation quality of enterprises based on panel data of listed enterprises in China from 2007–2019. We found that intelligent transformation promotes the improvement of corporate green innovation quality, and the results were robust. Furthermore, intelligent transformation improves the green innovation quality of enterprises through the mediating effects of human capital, research and development expenditure, information sharing effect and factor allocation efficiency. The development of the Internet, the implementation of the National Big Data Comprehensive Pilot Zone and the Broadband China strategy have all strengthened the green innovation quality improvement effect of intelligent transformation. The green innovation quality enhancement effect of intelligent transformation is heterogenous with regard to region, industry factor intensity, industry pollution level and enterprise ownership. Finally, this study provides important policy implications based on its empirical results. Future research should develop more suitable and comprehensive indicators, and focus on the latest data acquisition status to ensure timeliness.KEYWORDS: Intelligent transformationcorporate green innovation qualityartificial intelligencegreen innovationJEL CLASSIFICATION: I10O14O33 AcknowledgmentsThe authors take sole responsibility for all the views and opinions expressed in the paper.Disclosure statementNo potential conflict of interest was reported by the author(s).Data availability statementThe participants of this study did not give written consent for their data to be shared publicly, so due to the sensitive nature of the research supporting data is not available.Notes1 Due to the limited space, the detailed introduction of the dependent variable is shown in Appendix A in the datasets on line or can be obtained from the authors.2 Due to the limited space, the reason why the robot data published by IFR is not selected as the intelligentisation indicator is shown in Appendix B in the datasets on line or can be obtained from the authors.3 Due to the limited space, the specific keywords related to enterprise intelligentisation are shown in Appendix C in the datasets on line or can be obtained from the authors.4 Due to the limited space, the specific processing of the samples is presented in Appendix F in the datasets on line or can be obtained from the authors.5 In the Hausman test, the statistic value is 8864.72, and the P value is 0.0000.6 This study adopts the cluster-robust standard error at the enterprise level.7 Due to the limited space, the detailed presentation of the KV index is presented in Appendix G in the datasets on line or can be obtained from the authors.8 The data of net fixed assets express capital input; labour input is expressed by the total number of employees of the enterprise; total output is expressed by the data of the enterprise's main business revenue.9 The main environment-related terms used in this study are environmental protection, energy consumption, pollution, environmental protection, emission reduction, green, emission, low carbon, air quality, chemical oxygen demand, carbon dioxide, fine particulate matter, PM2.5, PM10 and sulphur dioxide.Additional informationFundingThis research was funded by the National Natural Science Foundation of China [Grant No. 72073071], the Qing Lan Project of Jiangsu Province [Grant No. D202062045], and the Postgraduate Research & Practice Innovation Program of Jiangsu Province [Grant No. KYCX22_2109].
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
淡然雁易发布了新的文献求助10
刚刚
杳鸢应助科研通管家采纳,获得10
刚刚
孙铭泽发布了新的文献求助10
刚刚
H2O发布了新的文献求助10
刚刚
大个应助科研通管家采纳,获得10
刚刚
小蘑菇应助科研通管家采纳,获得10
刚刚
zhouyu发布了新的文献求助10
刚刚
136542发布了新的文献求助10
刚刚
深情安青应助科研通管家采纳,获得10
刚刚
Ava应助小杨爱科研采纳,获得10
刚刚
店庆完成签到,获得积分10
刚刚
隐形曼青应助科研通管家采纳,获得10
1秒前
杳鸢应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
大模型应助科研通管家采纳,获得10
1秒前
深情安青应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
斯文败类应助科研通管家采纳,获得30
1秒前
领导范儿应助科研通管家采纳,获得30
2秒前
CodeCraft应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
2秒前
2秒前
蓝天海完成签到,获得积分0
2秒前
3秒前
4秒前
1111发布了新的文献求助10
5秒前
丘比特应助小阿鬼采纳,获得10
6秒前
彭于晏应助Eazin采纳,获得10
6秒前
7秒前
wanshuixiaowu173完成签到,获得积分10
7秒前
wgm完成签到,获得积分10
7秒前
7秒前
顺利毕业完成签到,获得积分10
7秒前
凌感动发布了新的文献求助10
7秒前
Lancer1034完成签到,获得积分20
9秒前
zho发布了新的文献求助10
10秒前
白居易完成签到,获得积分10
10秒前
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
Novel synthetic routes for multiple bond formation between Si, Ge, and Sn and the d- and p-block elements 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3515364
求助须知:如何正确求助?哪些是违规求助? 3097702
关于积分的说明 9236476
捐赠科研通 2792578
什么是DOI,文献DOI怎么找? 1532606
邀请新用户注册赠送积分活动 712198
科研通“疑难数据库(出版商)”最低求助积分说明 707160