Impact of intelligent transformation on the green innovation quality of Chinese enterprises: evidence from corporate green patent citation data

面板数据 质量(理念) 业务 背景(考古学) 产业组织 大数据 绿色增长 实证研究 知识管理 营销 计算机科学 经济 可持续发展 数据挖掘 生物 认识论 哲学 计量经济学 古生物学 法学 政治学
作者
Feng Han,Xin Mao
出处
期刊:Applied Economics [Taylor & Francis]
卷期号:: 1-18 被引量:11
标识
DOI:10.1080/00036846.2023.2244256
摘要

ABSTRACTIn the context of the rapid integration of artificial intelligence and the real economy, exploring the effects of intelligent transformation on the quality of green innovation in enterprises is of great practical significance. Therefore, this study aimed to identify the impact mechanism of intelligent transformation on the green innovation quality of enterprises based on panel data of listed enterprises in China from 2007–2019. We found that intelligent transformation promotes the improvement of corporate green innovation quality, and the results were robust. Furthermore, intelligent transformation improves the green innovation quality of enterprises through the mediating effects of human capital, research and development expenditure, information sharing effect and factor allocation efficiency. The development of the Internet, the implementation of the National Big Data Comprehensive Pilot Zone and the Broadband China strategy have all strengthened the green innovation quality improvement effect of intelligent transformation. The green innovation quality enhancement effect of intelligent transformation is heterogenous with regard to region, industry factor intensity, industry pollution level and enterprise ownership. Finally, this study provides important policy implications based on its empirical results. Future research should develop more suitable and comprehensive indicators, and focus on the latest data acquisition status to ensure timeliness.KEYWORDS: Intelligent transformationcorporate green innovation qualityartificial intelligencegreen innovationJEL CLASSIFICATION: I10O14O33 AcknowledgmentsThe authors take sole responsibility for all the views and opinions expressed in the paper.Disclosure statementNo potential conflict of interest was reported by the author(s).Data availability statementThe participants of this study did not give written consent for their data to be shared publicly, so due to the sensitive nature of the research supporting data is not available.Notes1 Due to the limited space, the detailed introduction of the dependent variable is shown in Appendix A in the datasets on line or can be obtained from the authors.2 Due to the limited space, the reason why the robot data published by IFR is not selected as the intelligentisation indicator is shown in Appendix B in the datasets on line or can be obtained from the authors.3 Due to the limited space, the specific keywords related to enterprise intelligentisation are shown in Appendix C in the datasets on line or can be obtained from the authors.4 Due to the limited space, the specific processing of the samples is presented in Appendix F in the datasets on line or can be obtained from the authors.5 In the Hausman test, the statistic value is 8864.72, and the P value is 0.0000.6 This study adopts the cluster-robust standard error at the enterprise level.7 Due to the limited space, the detailed presentation of the KV index is presented in Appendix G in the datasets on line or can be obtained from the authors.8 The data of net fixed assets express capital input; labour input is expressed by the total number of employees of the enterprise; total output is expressed by the data of the enterprise's main business revenue.9 The main environment-related terms used in this study are environmental protection, energy consumption, pollution, environmental protection, emission reduction, green, emission, low carbon, air quality, chemical oxygen demand, carbon dioxide, fine particulate matter, PM2.5, PM10 and sulphur dioxide.Additional informationFundingThis research was funded by the National Natural Science Foundation of China [Grant No. 72073071], the Qing Lan Project of Jiangsu Province [Grant No. D202062045], and the Postgraduate Research & Practice Innovation Program of Jiangsu Province [Grant No. KYCX22_2109].
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
司空绝山完成签到,获得积分10
1秒前
雪白的威完成签到,获得积分10
1秒前
搜集达人应助大可采纳,获得10
1秒前
在水一方应助典雅的俊驰采纳,获得10
2秒前
2秒前
2秒前
3秒前
Enns完成签到 ,获得积分10
3秒前
liao完成签到 ,获得积分10
3秒前
ddb发布了新的文献求助10
5秒前
炸茄盒的老头完成签到,获得积分10
5秒前
深情安青应助shengdong采纳,获得10
6秒前
7秒前
lls发布了新的文献求助10
7秒前
马彦杰发布了新的文献求助10
7秒前
宇少爱学习哟完成签到,获得积分10
7秒前
啸傲完成签到,获得积分10
7秒前
雾失楼台完成签到,获得积分10
7秒前
小二郎应助Jiang采纳,获得10
8秒前
阿德利企鹅完成签到 ,获得积分10
8秒前
8秒前
8秒前
10秒前
CodeCraft应助超饿的肥羊采纳,获得10
10秒前
量子星尘发布了新的文献求助10
11秒前
wenbo完成签到,获得积分10
11秒前
zhang完成签到,获得积分10
11秒前
11秒前
欣于所遇完成签到,获得积分10
11秒前
呆鹅喵喵发布了新的文献求助10
11秒前
Sally完成签到,获得积分10
12秒前
12秒前
YANHAN给YANHAN的求助进行了留言
13秒前
13秒前
shao发布了新的文献求助10
13秒前
14秒前
脑洞疼应助科研通管家采纳,获得10
15秒前
午见千山应助科研通管家采纳,获得10
16秒前
上官若男应助科研通管家采纳,获得10
16秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009366
求助须知:如何正确求助?哪些是违规求助? 3549232
关于积分的说明 11301348
捐赠科研通 3283689
什么是DOI,文献DOI怎么找? 1810387
邀请新用户注册赠送积分活动 886217
科研通“疑难数据库(出版商)”最低求助积分说明 811301