[Construction of a predictive model for in-hospital mortality of sepsis patients in intensive care unit based on machine learning].

医学 接收机工作特性 逻辑回归 重症监护室 机器学习 决策树 人工智能 败血症 随机森林 急诊医学 支持向量机 重症监护 重症监护医学 内科学 计算机科学
作者
Manchen Zhu,Chunying Hu,Yinyan He,Yanchun Qian,Sujuan Tang,Qinghe Hu,Cuiping Hao
出处
期刊:PubMed 卷期号:35 (7): 696-701 被引量:1
标识
DOI:10.3760/cma.j.cn121430-20221219-01104
摘要

To analyze the risk factors of in-hospital death in patients with sepsis in the intensive care unit (ICU) based on machine learning, and to construct a predictive model, and to explore the predictive value of the predictive model.The clinical data of patients with sepsis who were hospitalized in the ICU of the Affiliated Hospital of Jining Medical University from April 2015 to April 2021 were retrospectively analyzed,including demographic information, vital signs, complications, laboratory examination indicators, diagnosis, treatment, etc. Patients were divided into death group and survival group according to whether in-hospital death occurred. The cases in the dataset (70%) were randomly selected as the training set for building the model, and the remaining 30% of the cases were used as the validation set. Based on seven machine learning models including logistic regression (LR), K-nearest neighbor (KNN), support vector machine (SVM), decision tree (DT), random forest (RF), extreme gradient boosting (XGBoost) and artificial neural network (ANN), a prediction model for in-hospital mortality of sepsis patients was constructed. The receiver operator characteristic curve (ROC curve), calibration curve and decision curve analysis (DCA) were used to evaluate the predictive performance of the seven models from the aspects of identification, calibration and clinical application, respectively. In addition, the predictive model based on machine learning was compared with the sequential organ failure assessment (SOFA) and acute physiology and chronic health evaluation II (APACHE II) models.A total of 741 patients with sepsis were included, of which 390 were discharged after improvement, 351 died in hospital, and the in-hospital mortality was 47.4%. There were significant differences in gender, age, APACHE II score, SOFA score, Glasgow coma score (GCS), heart rate, oxygen index (PaO2/FiO2), mechanical ventilation ratio, mechanical ventilation time, proportion of norepinephrine (NE) used, maximum NE, lactic acid (Lac), activated partial thromboplastin time (APTT), albumin (ALB), serum creatinine (SCr), blood urea nitrogen (BUN), blood uric acid (BUA), pH value, base excess (BE), and K+ between the death group and the survival group. ROC curve analysis showed that the area under the curve (AUC) of RF, XGBoost, LR, ANN, DT, SVM, KNN models, SOFA score, and APACHE II score for predicting in-hospital mortality of sepsis patients were 0.871, 0.846, 0.751, 0.747, 0.677, 0.657, 0.555, 0.749 and 0.760, respectively. Among all the models, the RF model had the highest precision (0.750), accuracy (0.785), recall (0.773), and F1 score (0.761), and best discrimination. The calibration curve showed that the RF model performed best among the seven machine learning models. DCA curve showed that the RF model exhibited greater net benefit as well as threshold probability compared to other models, indicating that the RF model was the best model with good clinical utility.The machine learning model can be used as a reliable tool for predicting in-hospital mortality in sepsis patients. RF models has the best predictive performance, which is helpful for clinicians to identify high-risk patients and implement early intervention to reduce mortality.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
SciGPT应助矮小的海豚采纳,获得10
刚刚
啊噢完成签到,获得积分10
刚刚
liu完成签到 ,获得积分20
刚刚
黑煤球完成签到,获得积分10
1秒前
1秒前
1秒前
ellieou完成签到,获得积分10
1秒前
1秒前
1秒前
彭彭发布了新的文献求助10
1秒前
1秒前
zlq发布了新的文献求助10
2秒前
害羞彩虹发布了新的文献求助10
2秒前
田様应助zzz采纳,获得30
2秒前
爆米花应助yy湫采纳,获得10
2秒前
4秒前
璐璇完成签到 ,获得积分10
4秒前
ellieou发布了新的文献求助10
4秒前
4秒前
肖承祥完成签到 ,获得积分10
4秒前
sule发布了新的文献求助10
4秒前
陈隆完成签到,获得积分10
4秒前
石豪有发布了新的文献求助10
4秒前
无尘发布了新的文献求助10
4秒前
晋丫丫完成签到,获得积分10
4秒前
5秒前
saul发布了新的文献求助10
5秒前
5秒前
啦啦啦啦完成签到,获得积分10
5秒前
尹冰露发布了新的文献求助10
6秒前
Autin完成签到,获得积分0
6秒前
852应助闪闪的荟采纳,获得10
6秒前
李健的小迷弟应助马小鱼采纳,获得10
6秒前
趣多多发布了新的文献求助10
6秒前
6秒前
7秒前
满意语风发布了新的文献求助10
7秒前
景雄雄发布了新的文献求助10
7秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5506110
求助须知:如何正确求助?哪些是违规求助? 4601589
关于积分的说明 14477878
捐赠科研通 4535577
什么是DOI,文献DOI怎么找? 2485508
邀请新用户注册赠送积分活动 1468423
关于科研通互助平台的介绍 1440915