已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A survey on deep learning-based monocular spacecraft pose estimation: Current state, limitations and prospects

软件部署 航天器 计算机科学 姿势 模块化设计 人工智能 深度学习 太空探索 机器学习 航空航天工程 工程类 操作系统
作者
Leo Pauly,Wassim Rharbaoui,Carl Shneider,Arunkumar Rathinam,Vincent Gaudillière,Djamila Aouada
出处
期刊:Acta Astronautica [Elsevier]
卷期号:212: 339-360 被引量:10
标识
DOI:10.1016/j.actaastro.2023.08.001
摘要

Estimating the pose of an uncooperative spacecraft is an important computer vision problem for enabling the deployment of automatic vision-based systems in orbit, with applications ranging from on-orbit servicing to space debris removal. Following the general trend in computer vision, more and more works have been focusing on leveraging Deep Learning (DL) methods to address this problem. However and despite promising research-stage results, major challenges preventing the use of such methods in real-life missions still stand in the way. In particular, the deployment of such computation-intensive algorithms is still under-investigated, while the performance drop when training on synthetic and testing on real images remains to mitigate. The primary goal of this survey is to describe the current DL-based methods for spacecraft pose estimation in a comprehensive manner. The secondary goal is to help define the limitations towards the effective deployment of DL-based spacecraft pose estimation solutions for reliable autonomous vision-based applications. To this end, the survey first summarises the existing algorithms according to two approaches: hybrid modular pipelines and direct end-to-end regression methods. A comparison of algorithms is presented not only in terms of pose accuracy but also with a focus on network architectures and models’ sizes keeping potential deployment in mind. Then, current monocular spacecraft pose estimation datasets used to train and test these methods are discussed. The data generation methods: simulators and testbeds, the domain gap and the performance drop between synthetically generated and lab/space collected images and the potential solutions are also discussed. Finally, the paper presents open research questions and future directions in the field, drawing parallels with other computer vision applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大马哈鱼完成签到 ,获得积分10
刚刚
3秒前
华仔应助Derrick采纳,获得10
4秒前
6秒前
维夏十一完成签到,获得积分10
8秒前
8秒前
凛凛完成签到,获得积分20
8秒前
Jerry发布了新的文献求助10
9秒前
ChampionJ发布了新的文献求助10
11秒前
加菲丰丰举报曾开心求助涉嫌违规
11秒前
lulu完成签到,获得积分10
12秒前
杨伊森发布了新的文献求助10
14秒前
加菲丰丰举报ohhhh求助涉嫌违规
18秒前
凛凛发布了新的文献求助10
19秒前
脑洞疼应助体贴的强炫采纳,获得10
21秒前
所所应助Jerry采纳,获得10
22秒前
Hayat应助科研通管家采纳,获得10
23秒前
Polymer72应助科研通管家采纳,获得10
23秒前
23秒前
23秒前
Ava应助康康采纳,获得10
24秒前
小王完成签到 ,获得积分10
24秒前
小二郎应助要减肥冰菱采纳,获得10
24秒前
25秒前
加菲丰丰举报甄开心求助涉嫌违规
26秒前
29秒前
蛙蛙完成签到,获得积分10
31秒前
夏夏完成签到 ,获得积分10
32秒前
33秒前
35秒前
GRG完成签到 ,获得积分10
36秒前
打打应助凛凛采纳,获得10
38秒前
康康发布了新的文献求助10
40秒前
40秒前
杰尼龟完成签到,获得积分10
43秒前
史前巨怪发布了新的文献求助10
43秒前
rsaorestoaerstn完成签到,获得积分10
51秒前
龙卡烧烤店完成签到,获得积分10
52秒前
53秒前
姚芭蕉完成签到 ,获得积分0
53秒前
高分求助中
Natural History of Mantodea 螳螂的自然史 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
Smith-Purcell Radiation 500
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3344050
求助须知:如何正确求助?哪些是违规求助? 2971099
关于积分的说明 8646582
捐赠科研通 2651343
什么是DOI,文献DOI怎么找? 1451703
科研通“疑难数据库(出版商)”最低求助积分说明 672250
邀请新用户注册赠送积分活动 661785