A survey on deep learning-based monocular spacecraft pose estimation: Current state, limitations and prospects

软件部署 航天器 计算机科学 姿势 模块化设计 人工智能 深度学习 太空探索 机器学习 航空航天工程 工程类 操作系统
作者
Leo Pauly,Wassim Rharbaoui,Carl Shneider,Arunkumar Rathinam,Vincent Gaudillière,Djamila Aouada
出处
期刊:Acta Astronautica [Elsevier]
卷期号:212: 339-360 被引量:10
标识
DOI:10.1016/j.actaastro.2023.08.001
摘要

Estimating the pose of an uncooperative spacecraft is an important computer vision problem for enabling the deployment of automatic vision-based systems in orbit, with applications ranging from on-orbit servicing to space debris removal. Following the general trend in computer vision, more and more works have been focusing on leveraging Deep Learning (DL) methods to address this problem. However and despite promising research-stage results, major challenges preventing the use of such methods in real-life missions still stand in the way. In particular, the deployment of such computation-intensive algorithms is still under-investigated, while the performance drop when training on synthetic and testing on real images remains to mitigate. The primary goal of this survey is to describe the current DL-based methods for spacecraft pose estimation in a comprehensive manner. The secondary goal is to help define the limitations towards the effective deployment of DL-based spacecraft pose estimation solutions for reliable autonomous vision-based applications. To this end, the survey first summarises the existing algorithms according to two approaches: hybrid modular pipelines and direct end-to-end regression methods. A comparison of algorithms is presented not only in terms of pose accuracy but also with a focus on network architectures and models’ sizes keeping potential deployment in mind. Then, current monocular spacecraft pose estimation datasets used to train and test these methods are discussed. The data generation methods: simulators and testbeds, the domain gap and the performance drop between synthetically generated and lab/space collected images and the potential solutions are also discussed. Finally, the paper presents open research questions and future directions in the field, drawing parallels with other computer vision applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Cyh123完成签到,获得积分10
1秒前
自然1111发布了新的文献求助10
1秒前
Tracy完成签到,获得积分10
2秒前
WULAVIVA完成签到,获得积分10
2秒前
香蕉海白发布了新的文献求助10
3秒前
活力的香芦完成签到,获得积分10
3秒前
3秒前
乐观忆之完成签到 ,获得积分10
5秒前
5秒前
直率雪糕完成签到 ,获得积分10
5秒前
yy完成签到 ,获得积分10
6秒前
6秒前
仇敌克星完成签到,获得积分10
7秒前
Astra完成签到,获得积分10
8秒前
Tbin完成签到,获得积分10
8秒前
留猪完成签到,获得积分10
11秒前
秋风之墩完成签到,获得积分10
12秒前
Loey完成签到,获得积分10
13秒前
邓大瓜完成签到,获得积分10
13秒前
卖药丸的兔子完成签到 ,获得积分10
15秒前
spicyfish完成签到,获得积分10
16秒前
HopeLee完成签到,获得积分10
18秒前
DrPika完成签到,获得积分10
19秒前
积极的皮卡丘完成签到 ,获得积分10
19秒前
Lucas应助自然1111采纳,获得10
20秒前
WSY完成签到 ,获得积分10
21秒前
24秒前
25秒前
苗条盼山完成签到,获得积分10
25秒前
南枝焙雪完成签到 ,获得积分10
26秒前
舒心的雍发布了新的文献求助10
29秒前
29秒前
韩涵完成签到 ,获得积分10
32秒前
黄启烽完成签到,获得积分10
33秒前
媛媛完成签到 ,获得积分10
33秒前
秋秋完成签到,获得积分10
35秒前
烟花应助fly采纳,获得30
40秒前
eily完成签到 ,获得积分10
41秒前
xun完成签到,获得积分20
46秒前
忒寒碜完成签到,获得积分10
46秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Campbell Walsh Wein Urology 3-Volume Set 12th Edition 200
Three-dimensional virtual model for robot-assisted partial nephrectomy in totally endophytic renal tumors: a propensity-score matching analysis with a control group 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5866612
求助须知:如何正确求助?哪些是违规求助? 6424931
关于积分的说明 15654690
捐赠科研通 4981530
什么是DOI,文献DOI怎么找? 2686673
邀请新用户注册赠送积分活动 1629485
关于科研通互助平台的介绍 1587488