Deep Fusion for Multi-Modal 6D Pose Estimation

人工智能 模式 RGB颜色模型 计算机科学 姿势 模态(人机交互) 计算机视觉 点云 融合机制 情态动词 特征(语言学) 模式识别(心理学) 融合 社会科学 语言学 哲学 化学 脂质双层融合 社会学 高分子化学
作者
Shifeng Lin,Zunran Wang,Shenghao Zhang,Yonggen Ling,Chenguang Yang
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-10 被引量:2
标识
DOI:10.1109/tase.2023.3327772
摘要

6D pose estimation with individual modality encounters difficulties due to the limitations of modalities, such as RGB information on textureless objects and depth on reflective objects. This can be improved by exploiting the complementarity between modalities. Most of the previous methods only consider the correspondence between point clouds and RGB images and directly extract the features of the corresponding two modalities for fusion, which ignore the information of the modality itself and are negatively affected by erroneous background information when introducing more features for fusion. To enhance the complementarities between multiple modalities, we propose a neighbor-based cross-modalities attention mechanism for multi-modal 6D pose estimation. Neighbors represent that the RGB features of multiple neighbor are applied for fusion, which expands the receptive field. The cross-modalities attention mechanism leverages the similarities between the different modal features to help modal feature fusion, which reduces the negative impact of incorrect background information. Moreover, we design some features between the rendered image and the original image to obtain the confidence of pose estimation results. Experimental results on LM, LM-O and YCB-V datasets demonstrate the effectiveness of our methods. Video is available at https://www.youtube.com/watch?v=ApNBcX6NEGs. Note to Practitioners —Introducing the information of surrounding points during multi-modal fusion improves the performance of 6D pose estimation. For example, the RGB image corresponding to some point clouds on the object may lack rich texture features while the neighbors exist. However, most methods of modal fusion based on RGBD for 6D pose estimation only simply consider the corresponding between RGB images and point clouds for feature fusion, which may bring redundant information or the wrong background information when introducing neighbor information. In this paper, we propose a cross-modal attention mechanism based on neighbor information. By introducing the information of the modality itself to obtain the weight of the neighbor information of another modality in the encoding and decoding stages, the receptive field is expanded and the complementarities between different modalities are enhanced. The experiment shows our effectiveness. In addition, we provide a pose confidence estimator for predicted pose results. Specifically, the rendered image with the predicted pose and the real image are applied to extract features for the decision tree. The experimental results show that the result of the wrong estimation can be eliminated with high accuracy and recall. The 6D pose confidence can provide a reference for real-world grasping. However, the current method can only estimate objects with known models. In the future, we will consider applying the method to unseen objects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
完美的冰淇淋完成签到,获得积分20
刚刚
庸俗发布了新的文献求助10
刚刚
心印完成签到,获得积分20
刚刚
小司发布了新的文献求助10
1秒前
2秒前
makabaka发布了新的文献求助200
4秒前
某某某发布了新的文献求助10
4秒前
minr发布了新的文献求助10
4秒前
4秒前
彭于晏应助懵懂小尉采纳,获得10
5秒前
5秒前
7秒前
情木花肆完成签到,获得积分10
8秒前
8秒前
我不爱池鱼应助哈哈采纳,获得10
8秒前
斯文败类应助550采纳,获得10
8秒前
8秒前
千冬发布了新的文献求助10
9秒前
安若好便是晴完成签到,获得积分10
10秒前
Chris完成签到,获得积分10
12秒前
早起完成签到,获得积分10
13秒前
尛瞐慶成发布了新的文献求助10
14秒前
想瘦的海豹完成签到,获得积分20
14秒前
14秒前
DHW发布了新的文献求助10
14秒前
15秒前
15秒前
16秒前
任性的不愁应助gan采纳,获得10
16秒前
香蕉觅云应助彩色伯云采纳,获得30
17秒前
chenweijie完成签到,获得积分10
18秒前
18秒前
高高的戎发布了新的文献求助10
19秒前
芷兰丁香发布了新的文献求助50
19秒前
19秒前
小二郎应助dablack采纳,获得10
20秒前
20秒前
科研通AI2S应助saily采纳,获得10
20秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3305226
求助须知:如何正确求助?哪些是违规求助? 2939075
关于积分的说明 8491339
捐赠科研通 2613524
什么是DOI,文献DOI怎么找? 1427464
科研通“疑难数据库(出版商)”最低求助积分说明 663054
邀请新用户注册赠送积分活动 647708