清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Deep Fusion for Multi-Modal 6D Pose Estimation

人工智能 模式 RGB颜色模型 计算机科学 姿势 模态(人机交互) 计算机视觉 点云 融合机制 情态动词 特征(语言学) 模式识别(心理学) 融合 社会科学 语言学 哲学 化学 脂质双层融合 社会学 高分子化学
作者
Shifeng Lin,Zunran Wang,Shenghao Zhang,Yonggen Ling,Chenguang Yang
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:21 (4): 6540-6549 被引量:7
标识
DOI:10.1109/tase.2023.3327772
摘要

6D pose estimation with individual modality encounters difficulties due to the limitations of modalities, such as RGB information on textureless objects and depth on reflective objects. This can be improved by exploiting the complementarity between modalities. Most of the previous methods only consider the correspondence between point clouds and RGB images and directly extract the features of the corresponding two modalities for fusion, which ignore the information of the modality itself and are negatively affected by erroneous background information when introducing more features for fusion. To enhance the complementarities between multiple modalities, we propose a neighbor-based cross-modalities attention mechanism for multi-modal 6D pose estimation. Neighbors represent that the RGB features of multiple neighbor are applied for fusion, which expands the receptive field. The cross-modalities attention mechanism leverages the similarities between the different modal features to help modal feature fusion, which reduces the negative impact of incorrect background information. Moreover, we design some features between the rendered image and the original image to obtain the confidence of pose estimation results. Experimental results on LM, LM-O and YCB-V datasets demonstrate the effectiveness of our methods. Video is available at https://www.youtube.com/watch?v=ApNBcX6NEGs. Note to Practitioners —Introducing the information of surrounding points during multi-modal fusion improves the performance of 6D pose estimation. For example, the RGB image corresponding to some point clouds on the object may lack rich texture features while the neighbors exist. However, most methods of modal fusion based on RGBD for 6D pose estimation only simply consider the corresponding between RGB images and point clouds for feature fusion, which may bring redundant information or the wrong background information when introducing neighbor information. In this paper, we propose a cross-modal attention mechanism based on neighbor information. By introducing the information of the modality itself to obtain the weight of the neighbor information of another modality in the encoding and decoding stages, the receptive field is expanded and the complementarities between different modalities are enhanced. The experiment shows our effectiveness. In addition, we provide a pose confidence estimator for predicted pose results. Specifically, the rendered image with the predicted pose and the real image are applied to extract features for the decision tree. The experimental results show that the result of the wrong estimation can be eliminated with high accuracy and recall. The 6D pose confidence can provide a reference for real-world grasping. However, the current method can only estimate objects with known models. In the future, we will consider applying the method to unseen objects.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shhoing应助科研通管家采纳,获得10
刚刚
科研通AI2S应助科研通管家采纳,获得10
1秒前
shhoing应助科研通管家采纳,获得10
1秒前
LINDENG2004完成签到 ,获得积分10
22秒前
大喜喜发布了新的文献求助50
43秒前
King16完成签到,获得积分10
1分钟前
碗碗豆喵完成签到 ,获得积分10
2分钟前
shhoing应助科研通管家采纳,获得10
2分钟前
王梦秋完成签到 ,获得积分10
2分钟前
热情依白完成签到 ,获得积分10
2分钟前
yindi1991完成签到 ,获得积分10
3分钟前
3分钟前
欢呼亦绿完成签到,获得积分10
3分钟前
齐阳春完成签到 ,获得积分10
3分钟前
shhoing应助科研通管家采纳,获得10
4分钟前
4分钟前
宇文雨文完成签到 ,获得积分10
4分钟前
Lucas应助didididm采纳,获得10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
萝卜猪完成签到,获得积分10
7分钟前
科研通AI2S应助科研通管家采纳,获得10
8分钟前
没时间解释了完成签到 ,获得积分10
8分钟前
老迟到的友桃完成签到 ,获得积分10
8分钟前
cdercder完成签到,获得积分0
8分钟前
xiaowangwang完成签到 ,获得积分10
9分钟前
小二郎应助科研通管家采纳,获得10
10分钟前
科研通AI2S应助科研通管家采纳,获得10
10分钟前
shhoing应助科研通管家采纳,获得10
10分钟前
zyjsunye完成签到 ,获得积分10
10分钟前
聪慧的怀绿完成签到,获得积分10
11分钟前
11分钟前
HHM发布了新的文献求助10
11分钟前
11分钟前
11分钟前
HHM发布了新的文献求助10
11分钟前
shhoing应助科研通管家采纳,获得10
12分钟前
Arthur完成签到,获得积分10
12分钟前
一天完成签到 ,获得积分10
12分钟前
Balance Man完成签到 ,获得积分0
12分钟前
bing完成签到,获得积分10
13分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5561600
求助须知:如何正确求助?哪些是违规求助? 4646663
关于积分的说明 14678807
捐赠科研通 4588007
什么是DOI,文献DOI怎么找? 2517273
邀请新用户注册赠送积分活动 1490570
关于科研通互助平台的介绍 1461617