已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep Fusion for Multi-Modal 6D Pose Estimation

人工智能 模式 RGB颜色模型 计算机科学 姿势 模态(人机交互) 计算机视觉 点云 融合机制 情态动词 特征(语言学) 模式识别(心理学) 融合 社会科学 语言学 哲学 化学 脂质双层融合 社会学 高分子化学
作者
Shifeng Lin,Zunran Wang,Shenghao Zhang,Yonggen Ling,Chenguang Yang
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:21 (4): 6540-6549 被引量:7
标识
DOI:10.1109/tase.2023.3327772
摘要

6D pose estimation with individual modality encounters difficulties due to the limitations of modalities, such as RGB information on textureless objects and depth on reflective objects. This can be improved by exploiting the complementarity between modalities. Most of the previous methods only consider the correspondence between point clouds and RGB images and directly extract the features of the corresponding two modalities for fusion, which ignore the information of the modality itself and are negatively affected by erroneous background information when introducing more features for fusion. To enhance the complementarities between multiple modalities, we propose a neighbor-based cross-modalities attention mechanism for multi-modal 6D pose estimation. Neighbors represent that the RGB features of multiple neighbor are applied for fusion, which expands the receptive field. The cross-modalities attention mechanism leverages the similarities between the different modal features to help modal feature fusion, which reduces the negative impact of incorrect background information. Moreover, we design some features between the rendered image and the original image to obtain the confidence of pose estimation results. Experimental results on LM, LM-O and YCB-V datasets demonstrate the effectiveness of our methods. Video is available at https://www.youtube.com/watch?v=ApNBcX6NEGs. Note to Practitioners —Introducing the information of surrounding points during multi-modal fusion improves the performance of 6D pose estimation. For example, the RGB image corresponding to some point clouds on the object may lack rich texture features while the neighbors exist. However, most methods of modal fusion based on RGBD for 6D pose estimation only simply consider the corresponding between RGB images and point clouds for feature fusion, which may bring redundant information or the wrong background information when introducing neighbor information. In this paper, we propose a cross-modal attention mechanism based on neighbor information. By introducing the information of the modality itself to obtain the weight of the neighbor information of another modality in the encoding and decoding stages, the receptive field is expanded and the complementarities between different modalities are enhanced. The experiment shows our effectiveness. In addition, we provide a pose confidence estimator for predicted pose results. Specifically, the rendered image with the predicted pose and the real image are applied to extract features for the decision tree. The experimental results show that the result of the wrong estimation can be eliminated with high accuracy and recall. The 6D pose confidence can provide a reference for real-world grasping. However, the current method can only estimate objects with known models. In the future, we will consider applying the method to unseen objects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
white完成签到 ,获得积分10
3秒前
3秒前
5秒前
大方的星星完成签到,获得积分10
6秒前
7秒前
碧蓝的之云完成签到 ,获得积分10
8秒前
我是哈哈超人完成签到,获得积分10
8秒前
大大大漂亮完成签到 ,获得积分10
8秒前
10秒前
华仔应助猪猪hero采纳,获得10
10秒前
13秒前
squrreil发布了新的文献求助10
15秒前
FN_09完成签到,获得积分10
17秒前
18秒前
77发布了新的文献求助10
18秒前
Bob发布了新的文献求助10
18秒前
思源应助武愿采纳,获得10
20秒前
23秒前
猪猪hero发布了新的文献求助10
24秒前
25秒前
戴和家完成签到,获得积分10
26秒前
万能图书馆应助squrreil采纳,获得10
28秒前
28秒前
在水一方应助小小鹅采纳,获得10
29秒前
sjr发布了新的文献求助10
30秒前
30秒前
31秒前
科研通AI2S应助77采纳,获得10
32秒前
老天师一巴掌完成签到 ,获得积分10
33秒前
风趣雪卉发布了新的文献求助10
37秒前
37秒前
39秒前
田様应助你看那个蛋采纳,获得10
39秒前
43秒前
wk完成签到,获得积分10
45秒前
自信惋清完成签到,获得积分10
47秒前
戴和家发布了新的文献求助10
49秒前
52秒前
53秒前
53秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
Huang's Catheter Ablation of Cardiac Arrhythmias 5th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5126032
求助须知:如何正确求助?哪些是违规求助? 4329689
关于积分的说明 13491683
捐赠科研通 4164660
什么是DOI,文献DOI怎么找? 2283026
邀请新用户注册赠送积分活动 1284135
关于科研通互助平台的介绍 1223522