亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep Fusion for Multi-Modal 6D Pose Estimation

人工智能 模式 RGB颜色模型 计算机科学 姿势 模态(人机交互) 计算机视觉 点云 融合机制 情态动词 特征(语言学) 模式识别(心理学) 融合 社会科学 语言学 哲学 化学 脂质双层融合 社会学 高分子化学
作者
Shifeng Lin,Zunran Wang,Shenghao Zhang,Yonggen Ling,Chenguang Yang
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:21 (4): 6540-6549 被引量:7
标识
DOI:10.1109/tase.2023.3327772
摘要

6D pose estimation with individual modality encounters difficulties due to the limitations of modalities, such as RGB information on textureless objects and depth on reflective objects. This can be improved by exploiting the complementarity between modalities. Most of the previous methods only consider the correspondence between point clouds and RGB images and directly extract the features of the corresponding two modalities for fusion, which ignore the information of the modality itself and are negatively affected by erroneous background information when introducing more features for fusion. To enhance the complementarities between multiple modalities, we propose a neighbor-based cross-modalities attention mechanism for multi-modal 6D pose estimation. Neighbors represent that the RGB features of multiple neighbor are applied for fusion, which expands the receptive field. The cross-modalities attention mechanism leverages the similarities between the different modal features to help modal feature fusion, which reduces the negative impact of incorrect background information. Moreover, we design some features between the rendered image and the original image to obtain the confidence of pose estimation results. Experimental results on LM, LM-O and YCB-V datasets demonstrate the effectiveness of our methods. Video is available at https://www.youtube.com/watch?v=ApNBcX6NEGs. Note to Practitioners —Introducing the information of surrounding points during multi-modal fusion improves the performance of 6D pose estimation. For example, the RGB image corresponding to some point clouds on the object may lack rich texture features while the neighbors exist. However, most methods of modal fusion based on RGBD for 6D pose estimation only simply consider the corresponding between RGB images and point clouds for feature fusion, which may bring redundant information or the wrong background information when introducing neighbor information. In this paper, we propose a cross-modal attention mechanism based on neighbor information. By introducing the information of the modality itself to obtain the weight of the neighbor information of another modality in the encoding and decoding stages, the receptive field is expanded and the complementarities between different modalities are enhanced. The experiment shows our effectiveness. In addition, we provide a pose confidence estimator for predicted pose results. Specifically, the rendered image with the predicted pose and the real image are applied to extract features for the decision tree. The experimental results show that the result of the wrong estimation can be eliminated with high accuracy and recall. The 6D pose confidence can provide a reference for real-world grasping. However, the current method can only estimate objects with known models. In the future, we will consider applying the method to unseen objects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
忽晚完成签到 ,获得积分10
1秒前
NLJY完成签到,获得积分10
4秒前
8秒前
9秒前
葵葵完成签到,获得积分10
9秒前
子焱完成签到 ,获得积分10
12秒前
Xiong Siqi发布了新的文献求助10
12秒前
小刘完成签到,获得积分10
12秒前
111完成签到 ,获得积分10
14秒前
15秒前
CodeCraft应助葵葵采纳,获得10
17秒前
阿花阿花发布了新的文献求助10
20秒前
20秒前
火的信仰完成签到,获得积分10
21秒前
木有完成签到 ,获得积分10
21秒前
22秒前
24秒前
24秒前
雨寒完成签到 ,获得积分10
27秒前
英俊的铭应助qqxt采纳,获得10
27秒前
ssu90完成签到 ,获得积分10
28秒前
火的信仰发布了新的文献求助10
30秒前
35秒前
35秒前
英勇羿发布了新的文献求助10
35秒前
山楂发布了新的文献求助10
42秒前
大方的契发布了新的文献求助10
46秒前
婉莹完成签到 ,获得积分0
48秒前
牛八先生完成签到,获得积分10
48秒前
遥知马完成签到,获得积分10
51秒前
英勇羿发布了新的文献求助10
53秒前
56秒前
有点鸭梨呀完成签到 ,获得积分10
57秒前
英俊的铭应助高贵土豆采纳,获得10
1分钟前
慢慢发布了新的文献求助10
1分钟前
莫愁完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
orixero应助云枝采纳,获得10
1分钟前
平心定气完成签到 ,获得积分10
1分钟前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5454727
求助须知:如何正确求助?哪些是违规求助? 4562104
关于积分的说明 14284714
捐赠科研通 4485945
什么是DOI,文献DOI怎么找? 2457157
邀请新用户注册赠送积分活动 1447737
关于科研通互助平台的介绍 1422973