异质结
材料科学
光电流
分解水
光电子学
能量转换效率
电子转移
纳米技术
聚合物太阳能电池
可逆氢电极
密度泛函理论
化学工程
电极
光催化
光化学
化学
工作电极
电化学
催化作用
物理化学
生物化学
工程类
计算化学
作者
Kexin Ren,Jiayi Zhou,Zihao Wu,Qi Sun,Limin Qi
出处
期刊:Small
[Wiley]
日期:2023-08-31
卷期号:20 (1)
被引量:9
标识
DOI:10.1002/smll.202304835
摘要
Abstract Photoelectrochemical (PEC) water splitting represents an attractive strategy to realize the conversion from solar energy to hydrogen energy, but severe charge recombination in photoanodes significantly limits the conversion efficiency. Herein, a unique BiVO 4 (BVO) nanobowl (NB) heterojunction photoanode, which consists of [001]‐oriented BiOCl underlayer and BVO nanobowls containing embedded BiOCl nanocrystals, is fabricated by nanosphere lithography followed by in situ transformation. Experimental characterizations and theoretical simulation prove that nanobowl morphology can effectively enhance light absorption while reducing carrier diffusion path. Density functional theory (DFT) calculations show the tendency of electron transfer from BVO to BiOCl. The [001]‐oriented BiOCl underlayer forms a compact type II heterojunction with the BVO, favoring electron transfer from BVO through BiOCl to the substrate. Furthermore, the embedded BiOCl nanoparticles form a bulk heterojunction to facilitate bulk electron transfer. Consequently, the dual heterojunctions engineered BVO/BiOCl NB photoanode exhibits attractive PEC performance toward water oxidation with an excellent bulk charge separation efficiency of 95.5%, and a remarkable photocurrent density of 3.38 mA cm −2 at 1.23 V versus reversible hydrogen electrode, a fourfold enhancement compared to the flat BVO counterpart. This work highlights the great potential of integrating dual heterojunctions engineering and morphology engineering in fabricating high‐performance photoelectrodes toward efficient solar conversion.
科研通智能强力驱动
Strongly Powered by AbleSci AI