Using Synthetic Training Data in Neural Networks for the Estimation of Fiber Orientation Distribution Functions from Single Shell Data

人类连接体项目 计算机科学 人工智能 磁共振弥散成像 人工神经网络 体素 背景(考古学) 基本事实 方向(向量空间) 扫描仪 模式识别(心理学) 反褶积 计算机视觉 合成数据 算法 磁共振成像 数学 医学 古生物学 几何学 放射科 神经科学 功能连接 生物
作者
Amelie Rauland,Dorit Merhof
标识
DOI:10.1109/isbi53787.2023.10230737
摘要

Several studies have investigated the possibility of predicting the fiber orientation distribution function (fODF), which is obtained using the very accurate multi-shell multi-tissue constrained spherical deconvolution (MT-CSD) from single-shell or low angular resolution multi-shell diffusion magnetic resonance imaging (dMRI) data using deep learning.While all these approaches show promising results, the vast majority have in common that they require multi-shell high angular resolution diffusion imaging (HARDI) data to calculate the ground truth fODF using the MT-CSD for training their networks. This data, however, is difficult to acquire in a clinical context and it is yet unclear how well networks trained on data acquired on a certain scanner with a certain protocol would generalize to different data.In this work, we address these shortcomings and present a method that can estimate an accurate fODF from single-shell diffusion data without the need for multi-shell data for training. This is achieved by generating patient-, acquisition-and scanner-specific synthetic single voxel diffusion signals with a known ground truth fODF from single shell data that can be used to train the neural network. The trained network will then be applied to the real patient data to predict the fODF with a quality standard close to that of an MT-CSD and the ability to determine if white matter (WM) is present in the underlying voxel.The approach is evaluated on 20 subjects from the Human Connectome Project (HCP) for all three shells (b=1000, 2000, 3000 s/mm 2 ). When comparing both this approach and a single shell constrained spherical deconvolution (CSD) to the results of the MT-CSD, this work outperforms the single shell CSD in terms of the angular correlation coefficient and root mean squared error on all three shells.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
chenyuyuan完成签到,获得积分10
1秒前
1秒前
Liang完成签到,获得积分10
1秒前
华仔应助PATTOM采纳,获得10
2秒前
NN完成签到,获得积分10
2秒前
鲤鱼寻菡完成签到,获得积分10
3秒前
4秒前
ferritin发布了新的文献求助30
4秒前
开放灭绝发布了新的文献求助10
5秒前
健壮夏天发布了新的文献求助30
5秒前
6秒前
在水一方应助Mercury采纳,获得10
8秒前
大喜完成签到,获得积分10
8秒前
可爱的函函应助nashanbei采纳,获得10
8秒前
10秒前
qiao发布了新的文献求助10
11秒前
Akim应助Ma_Fangru采纳,获得30
12秒前
13秒前
十月的天空完成签到,获得积分10
14秒前
15秒前
星星轨迹发布了新的文献求助10
17秒前
18秒前
钦林发布了新的文献求助10
21秒前
21秒前
22秒前
heheheli发布了新的文献求助10
22秒前
23秒前
在水一方应助车灵波采纳,获得10
23秒前
24秒前
FashionBoy应助xiaoxiaoz采纳,获得10
25秒前
舒适访风发布了新的文献求助10
25秒前
hmgdktf发布了新的文献求助10
26秒前
大木头发布了新的文献求助10
26秒前
27秒前
wj完成签到,获得积分10
27秒前
28秒前
29秒前
30秒前
30秒前
赵凌完成签到,获得积分10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4624923
求助须知:如何正确求助?哪些是违规求助? 4024171
关于积分的说明 12456546
捐赠科研通 3708857
什么是DOI,文献DOI怎么找? 2045726
邀请新用户注册赠送积分活动 1077723
科研通“疑难数据库(出版商)”最低求助积分说明 960238