Using Synthetic Training Data in Neural Networks for the Estimation of Fiber Orientation Distribution Functions from Single Shell Data

人类连接体项目 计算机科学 人工智能 磁共振弥散成像 人工神经网络 体素 背景(考古学) 基本事实 方向(向量空间) 扫描仪 模式识别(心理学) 反褶积 计算机视觉 合成数据 算法 磁共振成像 数学 古生物学 几何学 放射科 神经科学 生物 医学 功能连接
作者
Amelie Rauland,Dorit Merhof
标识
DOI:10.1109/isbi53787.2023.10230737
摘要

Several studies have investigated the possibility of predicting the fiber orientation distribution function (fODF), which is obtained using the very accurate multi-shell multi-tissue constrained spherical deconvolution (MT-CSD) from single-shell or low angular resolution multi-shell diffusion magnetic resonance imaging (dMRI) data using deep learning.While all these approaches show promising results, the vast majority have in common that they require multi-shell high angular resolution diffusion imaging (HARDI) data to calculate the ground truth fODF using the MT-CSD for training their networks. This data, however, is difficult to acquire in a clinical context and it is yet unclear how well networks trained on data acquired on a certain scanner with a certain protocol would generalize to different data.In this work, we address these shortcomings and present a method that can estimate an accurate fODF from single-shell diffusion data without the need for multi-shell data for training. This is achieved by generating patient-, acquisition-and scanner-specific synthetic single voxel diffusion signals with a known ground truth fODF from single shell data that can be used to train the neural network. The trained network will then be applied to the real patient data to predict the fODF with a quality standard close to that of an MT-CSD and the ability to determine if white matter (WM) is present in the underlying voxel.The approach is evaluated on 20 subjects from the Human Connectome Project (HCP) for all three shells (b=1000, 2000, 3000 s/mm 2 ). When comparing both this approach and a single shell constrained spherical deconvolution (CSD) to the results of the MT-CSD, this work outperforms the single shell CSD in terms of the angular correlation coefficient and root mean squared error on all three shells.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
酷酷阑香发布了新的文献求助10
刚刚
Vernon完成签到,获得积分10
刚刚
欣慰问柳完成签到,获得积分10
1秒前
KYJR完成签到,获得积分10
2秒前
昏睡的蟠桃应助maomao采纳,获得200
2秒前
知了完成签到,获得积分10
3秒前
小熊爱吃糖完成签到,获得积分10
3秒前
百川关注了科研通微信公众号
4秒前
heavennew完成签到,获得积分10
4秒前
Hudson完成签到,获得积分10
5秒前
5秒前
5秒前
恭喜恭喜完成签到,获得积分10
6秒前
jing2000yr完成签到,获得积分20
6秒前
zgx完成签到,获得积分10
6秒前
6秒前
奈克罗普陀西斯完成签到,获得积分10
7秒前
orixero应助愉快彩虹采纳,获得10
8秒前
9秒前
冥冥之极为昭昭完成签到,获得积分10
9秒前
十四发布了新的文献求助10
10秒前
木笔朱瑾完成签到 ,获得积分10
11秒前
lishui发布了新的文献求助10
11秒前
MHK完成签到,获得积分10
12秒前
外向的飞雪完成签到,获得积分10
12秒前
13秒前
笑点低的惊蛰完成签到,获得积分10
13秒前
小马甲应助TN采纳,获得10
13秒前
肥鹏完成签到,获得积分10
14秒前
14秒前
小桑桑完成签到,获得积分10
14秒前
南风上北山完成签到,获得积分10
14秒前
15秒前
15秒前
希望天下0贩的0应助kushdw采纳,获得10
15秒前
复杂雪一完成签到,获得积分10
15秒前
小桔青山完成签到,获得积分10
15秒前
LV完成签到,获得积分10
16秒前
16秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960404
求助须知:如何正确求助?哪些是违规求助? 3506557
关于积分的说明 11131183
捐赠科研通 3238768
什么是DOI,文献DOI怎么找? 1789884
邀请新用户注册赠送积分活动 871986
科研通“疑难数据库(出版商)”最低求助积分说明 803118