Candida antarctica lipase B performance in organic solvent at varying water activities studied by molecular dynamics simulations

南极洲假丝酵母 脂肪酶 活动站点 水活度 化学 分子动力学 溶剂 生物信息学 有机化学 计算化学 生物化学 含水量 基因 工程类 岩土工程
作者
Helena D. Tjørnelund,Jesper Vind,Jesper Brask,John M. Woodley,Günther H. Peters
出处
期刊:Computational and structural biotechnology journal [Elsevier]
卷期号:21: 5451-5462 被引量:5
标识
DOI:10.1016/j.csbj.2023.10.049
摘要

Applications of lipases in low-water environments are found across a broad range of industries, including the pharmaceutical and oleochemical sectors. This includes condensation reactions in organic solvents where the enzyme activity has been found to depend strongly on both the solvent and the water activity (aw). Despite several experimental and computational studies, knowledge is largely empirical, and a general predictive approach is much needed. To close this gap, we chose native Candida antarctica lipase B (CALB) and two mutants thereof and used molecular dynamics (MD) simulations to gain a molecular understanding of the effect of aw on the specific activity of CALB in hexane. Based on the simulations, we propose four criteria to understand the performance of CALB in organic media, which is supported by enzyme kinetics experiments. First, the lipase must be stable in the organic solvent, which was the case for native CALB and the two mutants studied here. Secondly, water clusters that form and grow close to the active site must not block the path of substrate molecules into the active site. Thirdly, the lipase's lid must not cover the active site. Finally, mutations and changes in aw must not disrupt the geometry of the active site. We show that mutating specific residues close to the active site can hinder water cluster formation and growth, making the lipase resistant to changes in aw. Our computational screening criteria could potentially be used to screen in-silico designed variants, so only promising candidates could be pushed forward to characterisation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
思源应助王豆豆采纳,获得10
1秒前
1秒前
小仙女应助健忘煎蛋采纳,获得10
1秒前
8232发布了新的文献求助10
2秒前
隐形曼青应助小研究牲采纳,获得10
3秒前
愉快草莓完成签到,获得积分10
4秒前
开朗发卡完成签到,获得积分10
4秒前
沐秋完成签到,获得积分10
4秒前
ding应助无限翅膀采纳,获得30
5秒前
wangjiaxiang发布了新的文献求助10
5秒前
5秒前
无敌小承发布了新的文献求助10
5秒前
赘婿应助曙丽盼采纳,获得10
5秒前
suda完成签到,获得积分20
5秒前
sky发布了新的文献求助10
6秒前
希望天下0贩的0应助lvlv采纳,获得10
6秒前
景瑜发布了新的文献求助10
6秒前
michael完成签到,获得积分10
6秒前
Aurinse发布了新的文献求助10
7秒前
愉快向秋完成签到,获得积分10
7秒前
白纸完成签到,获得积分20
7秒前
才哥发布了新的文献求助10
8秒前
8秒前
小研究牲完成签到,获得积分10
9秒前
调研昵称发布了新的文献求助10
9秒前
乐乐应助陶醉的绮山采纳,获得10
10秒前
Akim应助卡卡西采纳,获得10
10秒前
10秒前
11秒前
12秒前
科研通AI5应助景瑜采纳,获得10
12秒前
13秒前
科研通AI2S应助白华苍松采纳,获得10
13秒前
13秒前
hhhh发布了新的文献求助10
13秒前
烟花应助一大碗芋泥采纳,获得10
14秒前
14秒前
16秒前
16秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3482877
求助须知:如何正确求助?哪些是违规求助? 3072364
关于积分的说明 9126518
捐赠科研通 2764066
什么是DOI,文献DOI怎么找? 1516800
邀请新用户注册赠送积分活动 701808
科研通“疑难数据库(出版商)”最低求助积分说明 700719