TMG-GAN: Generative Adversarial Networks-Based Imbalanced Learning for Network Intrusion Detection

计算机科学 鉴别器 入侵检测系统 发电机(电路理论) 数据挖掘 人工智能 分类器(UML) 过采样 机器学习 模式识别(心理学) 计算机网络 探测器 带宽(计算) 电信 物理 功率(物理) 量子力学
作者
Hongwei Ding,Yu Sun,Nana Huang,Zhidong Shen,Xiaohui Cui
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:19: 1156-1167 被引量:74
标识
DOI:10.1109/tifs.2023.3331240
摘要

Internet of Things (IoT) devices are large in number, widely distributed, weak in protection ability, and vulnerable to various malicious attacks. Intrusion detection technology can provide good protection for network equipment. However, the normal traffic and abnormal traffic in the network are usually imbalanced. Imbalanced samples will seriously affect the performance of machine learning detection algorithm. Therefore, this paper proposes an intrusion detection method based on data augmentation, namely TMG-IDS. We name the proposed data augmentation model TMG-GAN, which is a data augmentation method based on generative adversarial networks (GAN). First, TMG-GAN has a multi-generator structure, which can be used to generate different types of attack data simultaneously. Second, we increase the classifier structure, which can optimize the generator and discriminator more efficiently based on the classification loss. Third, we calculate the cosine similarity between the generated samples and the original samples and other types of generated samples as a generator loss, which can further improve the quality of generated samples and reduce the class overlap area between the distributions of various generated samples. We conduct extensive experiments on two intrusion detection datasets, CICIDS2017 and UNSW-NB15. The experimental results show that compared with the advanced oversampling algorithm and the latest intrusion detection algorithm, the proposed TMG-IDS method has a good detection effect under the three indicators of Precision, Recall and F1-score.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一一一完成签到,获得积分10
刚刚
量子星尘发布了新的文献求助10
1秒前
可可可11完成签到,获得积分10
1秒前
Sunday发布了新的文献求助10
2秒前
3秒前
3秒前
雪媚娘发布了新的文献求助10
3秒前
sunny发布了新的文献求助10
3秒前
旅程发布了新的文献求助10
4秒前
123完成签到,获得积分20
4秒前
4秒前
5秒前
Eatanicecube发布了新的文献求助30
6秒前
田様应助大海是大海采纳,获得10
7秒前
量子星尘发布了新的文献求助10
8秒前
9秒前
天真枫发布了新的文献求助10
9秒前
LS发布了新的文献求助10
10秒前
10秒前
11秒前
11秒前
希望天下0贩的0应助宋杓采纳,获得50
11秒前
一位勤奋好学的h女士完成签到,获得积分10
12秒前
LZX完成签到,获得积分10
12秒前
13秒前
wen_xxx发布了新的文献求助10
13秒前
clone2012完成签到,获得积分10
13秒前
白白不喽发布了新的文献求助10
14秒前
14秒前
天天快乐应助逍遥游采纳,获得10
15秒前
hrs发布了新的文献求助10
16秒前
16秒前
小蘑菇应助研友_ZeqAxZ采纳,获得10
16秒前
16秒前
包容溪灵发布了新的文献求助10
17秒前
17秒前
我是老大应助sunny采纳,获得10
18秒前
渊鱼发布了新的文献求助10
18秒前
18秒前
丘比特应助科研大捞采纳,获得10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5712345
求助须知:如何正确求助?哪些是违规求助? 5209385
关于积分的说明 15267184
捐赠科研通 4864321
什么是DOI,文献DOI怎么找? 2611345
邀请新用户注册赠送积分活动 1561615
关于科研通互助平台的介绍 1518892