重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

TMG-GAN: Generative Adversarial Networks-Based Imbalanced Learning for Network Intrusion Detection

计算机科学 鉴别器 入侵检测系统 发电机(电路理论) 数据挖掘 人工智能 分类器(UML) 过采样 机器学习 模式识别(心理学) 计算机网络 探测器 带宽(计算) 电信 功率(物理) 物理 量子力学
作者
Hongwei Ding,Yu Sun,Nana Huang,Zhidong Shen,Xiaohui Cui
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:19: 1156-1167 被引量:42
标识
DOI:10.1109/tifs.2023.3331240
摘要

Internet of Things (IoT) devices are large in number, widely distributed, weak in protection ability, and vulnerable to various malicious attacks. Intrusion detection technology can provide good protection for network equipment. However, the normal traffic and abnormal traffic in the network are usually imbalanced. Imbalanced samples will seriously affect the performance of machine learning detection algorithm. Therefore, this paper proposes an intrusion detection method based on data augmentation, namely TMG-IDS. We name the proposed data augmentation model TMG-GAN, which is a data augmentation method based on generative adversarial networks (GAN). First, TMG-GAN has a multi-generator structure, which can be used to generate different types of attack data simultaneously. Second, we increase the classifier structure, which can optimize the generator and discriminator more efficiently based on the classification loss. Third, we calculate the cosine similarity between the generated samples and the original samples and other types of generated samples as a generator loss, which can further improve the quality of generated samples and reduce the class overlap area between the distributions of various generated samples. We conduct extensive experiments on two intrusion detection datasets, CICIDS2017 and UNSW-NB15. The experimental results show that compared with the advanced oversampling algorithm and the latest intrusion detection algorithm, the proposed TMG-IDS method has a good detection effect under the three indicators of Precision, Recall and F1-score.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
kaka完成签到,获得积分10
1秒前
1秒前
2秒前
阔达的乌冬面完成签到,获得积分10
2秒前
充电宝应助盼山采纳,获得10
3秒前
大模型应助wise111采纳,获得10
4秒前
4秒前
英俊的铭应助汪格森采纳,获得10
4秒前
4秒前
英俊的铭应助哇啦哇啦采纳,获得10
4秒前
郑苗苗发布了新的文献求助10
4秒前
传奇3应助Ding_RJ采纳,获得10
5秒前
佳丽发布了新的文献求助10
5秒前
酷波er应助苏苏采纳,获得10
5秒前
5秒前
ding应助tqs采纳,获得30
5秒前
JeKing完成签到,获得积分10
6秒前
t通发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
666完成签到,获得积分10
6秒前
wwwww发布了新的文献求助10
7秒前
7秒前
加菲丰丰应助专注思雁采纳,获得10
9秒前
andy完成签到,获得积分10
9秒前
乐乐应助夏晴晴采纳,获得10
9秒前
寒夜发布了新的文献求助10
10秒前
11秒前
11秒前
11秒前
12秒前
12秒前
12秒前
13秒前
13秒前
13秒前
13秒前
大个应助单薄的小松鼠采纳,获得10
14秒前
天天快乐应助伊呀呀呀采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5468193
求助须知:如何正确求助?哪些是违规求助? 4571644
关于积分的说明 14330855
捐赠科研通 4498131
什么是DOI,文献DOI怎么找? 2464353
邀请新用户注册赠送积分活动 1453088
关于科研通互助平台的介绍 1427739