TMG-GAN: Generative Adversarial Networks-Based Imbalanced Learning for Network Intrusion Detection

计算机科学 鉴别器 入侵检测系统 发电机(电路理论) 数据挖掘 人工智能 分类器(UML) 过采样 机器学习 模式识别(心理学) 计算机网络 探测器 带宽(计算) 电信 功率(物理) 物理 量子力学
作者
Hongwei Ding,Yu Sun,Nana Huang,Zhidong Shen,Xiaohui Cui
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:19: 1156-1167 被引量:14
标识
DOI:10.1109/tifs.2023.3331240
摘要

Internet of Things (IoT) devices are large in number, widely distributed, weak in protection ability, and vulnerable to various malicious attacks. Intrusion detection technology can provide good protection for network equipment. However, the normal traffic and abnormal traffic in the network are usually imbalanced. Imbalanced samples will seriously affect the performance of machine learning detection algorithm. Therefore, this paper proposes an intrusion detection method based on data augmentation, namely TMG-IDS. We name the proposed data augmentation model TMG-GAN, which is a data augmentation method based on generative adversarial networks (GAN). First, TMG-GAN has a multi-generator structure, which can be used to generate different types of attack data simultaneously. Second, we increase the classifier structure, which can optimize the generator and discriminator more efficiently based on the classification loss. Third, we calculate the cosine similarity between the generated samples and the original samples and other types of generated samples as a generator loss, which can further improve the quality of generated samples and reduce the class overlap area between the distributions of various generated samples. We conduct extensive experiments on two intrusion detection datasets, CICIDS2017 and UNSW-NB15. The experimental results show that compared with the advanced oversampling algorithm and the latest intrusion detection algorithm, the proposed TMG-IDS method has a good detection effect under the three indicators of Precision, Recall and F1-score.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
jinhuanghuiyu应助月蚀六花采纳,获得10
3秒前
Endeavor完成签到,获得积分10
3秒前
4秒前
qiuqiu完成签到,获得积分20
5秒前
6秒前
7秒前
唔西迪西发布了新的文献求助10
7秒前
sensensmart发布了新的文献求助10
7秒前
bbq完成签到,获得积分20
8秒前
8秒前
8秒前
10秒前
空白掉落完成签到 ,获得积分10
11秒前
bbq发布了新的文献求助10
12秒前
12秒前
余味完成签到 ,获得积分10
12秒前
max完成签到,获得积分10
13秒前
zxl发布了新的文献求助10
13秒前
13秒前
14秒前
Berry完成签到,获得积分10
16秒前
进口小宵完成签到,获得积分10
17秒前
调皮冷风发布了新的文献求助10
17秒前
cs完成签到 ,获得积分10
18秒前
18秒前
nnnn发布了新的文献求助10
18秒前
fxy完成签到 ,获得积分10
20秒前
hmgdktf完成签到,获得积分10
21秒前
进口小宵发布了新的文献求助10
22秒前
sjyu1985完成签到 ,获得积分10
22秒前
付霖云完成签到 ,获得积分10
25秒前
Ivy完成签到,获得积分10
25秒前
爱炸鸡也爱烧烤完成签到 ,获得积分10
29秒前
404NotFOUND应助bbq采纳,获得10
29秒前
打打应助123采纳,获得10
29秒前
小蘑菇应助llx采纳,获得10
30秒前
zyy完成签到,获得积分10
32秒前
笑点低涟妖完成签到,获得积分20
34秒前
34秒前
高分求助中
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Mantodea of the World: Species Catalog Andrew M 500
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3464375
求助须知:如何正确求助?哪些是违规求助? 3057717
关于积分的说明 9058109
捐赠科研通 2747718
什么是DOI,文献DOI怎么找? 1507609
科研通“疑难数据库(出版商)”最低求助积分说明 696564
邀请新用户注册赠送积分活动 696159