TMG-GAN: Generative Adversarial Networks-Based Imbalanced Learning for Network Intrusion Detection

计算机科学 鉴别器 入侵检测系统 发电机(电路理论) 数据挖掘 人工智能 分类器(UML) 过采样 机器学习 模式识别(心理学) 计算机网络 探测器 带宽(计算) 电信 功率(物理) 物理 量子力学
作者
Hongwei Ding,Yu Sun,Nana Huang,Zhidong Shen,Xiaohui Cui
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:19: 1156-1167 被引量:25
标识
DOI:10.1109/tifs.2023.3331240
摘要

Internet of Things (IoT) devices are large in number, widely distributed, weak in protection ability, and vulnerable to various malicious attacks. Intrusion detection technology can provide good protection for network equipment. However, the normal traffic and abnormal traffic in the network are usually imbalanced. Imbalanced samples will seriously affect the performance of machine learning detection algorithm. Therefore, this paper proposes an intrusion detection method based on data augmentation, namely TMG-IDS. We name the proposed data augmentation model TMG-GAN, which is a data augmentation method based on generative adversarial networks (GAN). First, TMG-GAN has a multi-generator structure, which can be used to generate different types of attack data simultaneously. Second, we increase the classifier structure, which can optimize the generator and discriminator more efficiently based on the classification loss. Third, we calculate the cosine similarity between the generated samples and the original samples and other types of generated samples as a generator loss, which can further improve the quality of generated samples and reduce the class overlap area between the distributions of various generated samples. We conduct extensive experiments on two intrusion detection datasets, CICIDS2017 and UNSW-NB15. The experimental results show that compared with the advanced oversampling algorithm and the latest intrusion detection algorithm, the proposed TMG-IDS method has a good detection effect under the three indicators of Precision, Recall and F1-score.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
小卡发布了新的文献求助10
2秒前
SilentStorm完成签到,获得积分10
2秒前
Queen发布了新的文献求助10
2秒前
3秒前
and999发布了新的文献求助10
3秒前
李健应助阜睿采纳,获得10
3秒前
周一发布了新的文献求助10
3秒前
十四应助js采纳,获得10
3秒前
今后应助humaning采纳,获得10
3秒前
1111发布了新的文献求助10
4秒前
ruanruan完成签到,获得积分10
4秒前
5秒前
小小发布了新的文献求助10
5秒前
Bean发布了新的文献求助10
5秒前
FashionBoy应助汪汪采纳,获得10
6秒前
跳跃的凌文完成签到 ,获得积分10
6秒前
林小不脏发布了新的文献求助10
6秒前
阿九完成签到,获得积分10
6秒前
7秒前
7秒前
科研通AI2S应助yuaasusanaann采纳,获得10
8秒前
佳语妍说完成签到,获得积分10
8秒前
8秒前
Lone完成签到,获得积分10
8秒前
9秒前
Shan完成签到 ,获得积分10
9秒前
传奇3应助ning采纳,获得10
10秒前
戏言121完成签到,获得积分10
10秒前
ysy发布了新的文献求助10
10秒前
充电宝应助smy采纳,获得10
10秒前
欢呼平蓝完成签到,获得积分10
10秒前
朱欣宇发布了新的文献求助10
11秒前
11秒前
11秒前
木木康发布了新的文献求助10
11秒前
戏言121发布了新的文献求助10
12秒前
zhu完成签到,获得积分20
13秒前
13秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009487
求助须知:如何正确求助?哪些是违规求助? 3549466
关于积分的说明 11302335
捐赠科研通 3284069
什么是DOI,文献DOI怎么找? 1810464
邀请新用户注册赠送积分活动 886301
科研通“疑难数据库(出版商)”最低求助积分说明 811339