TMG-GAN: Generative Adversarial Networks-Based Imbalanced Learning for Network Intrusion Detection

计算机科学 鉴别器 入侵检测系统 发电机(电路理论) 数据挖掘 人工智能 分类器(UML) 过采样 机器学习 模式识别(心理学) 计算机网络 探测器 带宽(计算) 电信 物理 功率(物理) 量子力学
作者
Hongwei Ding,Yu Sun,Nana Huang,Zhidong Shen,Xiaohui Cui
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:19: 1156-1167 被引量:17
标识
DOI:10.1109/tifs.2023.3331240
摘要

Internet of Things (IoT) devices are large in number, widely distributed, weak in protection ability, and vulnerable to various malicious attacks. Intrusion detection technology can provide good protection for network equipment. However, the normal traffic and abnormal traffic in the network are usually imbalanced. Imbalanced samples will seriously affect the performance of machine learning detection algorithm. Therefore, this paper proposes an intrusion detection method based on data augmentation, namely TMG-IDS. We name the proposed data augmentation model TMG-GAN, which is a data augmentation method based on generative adversarial networks (GAN). First, TMG-GAN has a multi-generator structure, which can be used to generate different types of attack data simultaneously. Second, we increase the classifier structure, which can optimize the generator and discriminator more efficiently based on the classification loss. Third, we calculate the cosine similarity between the generated samples and the original samples and other types of generated samples as a generator loss, which can further improve the quality of generated samples and reduce the class overlap area between the distributions of various generated samples. We conduct extensive experiments on two intrusion detection datasets, CICIDS2017 and UNSW-NB15. The experimental results show that compared with the advanced oversampling algorithm and the latest intrusion detection algorithm, the proposed TMG-IDS method has a good detection effect under the three indicators of Precision, Recall and F1-score.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
肥肥凤梨完成签到,获得积分10
1秒前
时尚羿完成签到,获得积分20
1秒前
2秒前
2秒前
hhh发布了新的文献求助10
2秒前
小糯发布了新的文献求助10
2秒前
3秒前
SciGPT应助xinanan采纳,获得10
4秒前
4秒前
5秒前
niluofan发布了新的文献求助10
5秒前
6秒前
幸福羽毛发布了新的文献求助10
7秒前
CodeCraft应助忐忑的如曼采纳,获得10
7秒前
7秒前
小鱼完成签到,获得积分10
7秒前
乐观振家发布了新的文献求助10
8秒前
儒雅不弱发布了新的文献求助10
9秒前
天天快乐应助bofu采纳,获得10
9秒前
卓儿完成签到,获得积分10
9秒前
认真涵瑶发布了新的文献求助10
11秒前
wankai发布了新的文献求助10
11秒前
852应助阳光白羊采纳,获得10
12秒前
nini完成签到,获得积分10
12秒前
奋斗的夏柳完成签到 ,获得积分10
13秒前
无畏完成签到 ,获得积分10
13秒前
13秒前
jason完成签到,获得积分10
14秒前
月yue发布了新的文献求助10
14秒前
朴素的招牌完成签到,获得积分10
14秒前
15秒前
仁清完成签到,获得积分10
15秒前
SciGPT应助认真的灵枫采纳,获得10
15秒前
Chloe完成签到,获得积分10
16秒前
16秒前
卢敏明发布了新的文献求助10
16秒前
爱笑的傲薇完成签到,获得积分10
17秒前
认真涵瑶完成签到,获得积分20
17秒前
17秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 666
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3734840
求助须知:如何正确求助?哪些是违规求助? 3278768
关于积分的说明 10011520
捐赠科研通 2995441
什么是DOI,文献DOI怎么找? 1643442
邀请新用户注册赠送积分活动 781187
科研通“疑难数据库(出版商)”最低求助积分说明 749300