THGNCDA: circRNA–disease association prediction based on triple heterogeneous graph network

计算生物学 疾病 环状RNA 生物 图形 计算机科学 非编码RNA 小RNA 生物信息学 机器学习 基因 遗传学 理论计算机科学 医学 病理
作者
Yuwei Guo,Ming Yi
出处
期刊:Briefings in Functional Genomics [Oxford University Press]
卷期号:23 (4): 384-394 被引量:5
标识
DOI:10.1093/bfgp/elad042
摘要

Abstract Circular RNAs (circRNAs) are a class of noncoding RNA molecules featuring a closed circular structure. They have been proved to play a significant role in the reduction of many diseases. Besides, many researches in clinical diagnosis and treatment of disease have revealed that circRNA can be considered as a potential biomarker. Therefore, understanding the association of circRNA and diseases can help to forecast some disorders of life activities. However, traditional biological experimental methods are time-consuming. The most common method for circRNA–disease association prediction on the basis of machine learning can avoid this, which relies on diverse data. Nevertheless, topological information of circRNA and disease usually is not involved in these methods. Moreover, circRNAs can be associated with diseases through miRNAs. With these considerations, we proposed a novel method, named THGNCDA, to predict the association between circRNAs and diseases. Specifically, for a certain pair of circRNA and disease, we employ a graph neural network with attention to learn the importance of its each neighbor. In addition, we use a multilayer convolutional neural network to explore the relationship of a circRNA–disease pair based on their attributes. When calculating embeddings, we introduce the information of miRNAs. The results of experiments show that THGNCDA outperformed the SOTA methods. In addition, it can be observed that our method gives a better recall rate. To confirm the significance of attention, we conducted extensive ablation studies. Case studies on Urinary Bladder and Prostatic Neoplasms further show THGNCDA’s ability in discovering known relationships between circRNA candidates and diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
Qn发布了新的文献求助10
3秒前
开心的向雁完成签到,获得积分10
5秒前
moyan发布了新的文献求助10
5秒前
6秒前
6秒前
北彧发布了新的文献求助10
7秒前
7秒前
穆晴朗完成签到,获得积分10
8秒前
刘亦菲完成签到,获得积分10
8秒前
huangyao完成签到 ,获得积分10
8秒前
piliayouxia发布了新的文献求助10
9秒前
任寒松发布了新的文献求助30
10秒前
huang发布了新的文献求助10
10秒前
小鱼完成签到,获得积分10
11秒前
坚定的雁完成签到 ,获得积分10
12秒前
Singularity应助咕噜噜采纳,获得20
12秒前
12秒前
Qn完成签到,获得积分10
13秒前
Ava应助xuyan采纳,获得10
13秒前
16秒前
搜集达人应助hahahah采纳,获得10
17秒前
天天快乐应助北彧采纳,获得10
18秒前
荼白发布了新的文献求助10
19秒前
19秒前
jimmy完成签到,获得积分10
19秒前
任寒松完成签到,获得积分10
20秒前
赘婿应助onetec采纳,获得10
21秒前
22秒前
22秒前
steven完成签到 ,获得积分10
23秒前
23秒前
24秒前
24秒前
YH2完成签到,获得积分10
25秒前
Zhong发布了新的文献求助10
25秒前
王志恒完成签到,获得积分10
27秒前
汤汤发布了新的文献求助10
28秒前
yyh09719给yyh09719的求助进行了留言
28秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143769
求助须知:如何正确求助?哪些是违规求助? 2795306
关于积分的说明 7814169
捐赠科研通 2451255
什么是DOI,文献DOI怎么找? 1304400
科研通“疑难数据库(出版商)”最低求助积分说明 627221
版权声明 601413