THGNCDA: circRNA–disease association prediction based on triple heterogeneous graph network

计算生物学 疾病 环状RNA 生物 图形 计算机科学 非编码RNA 小RNA 生物信息学 机器学习 基因 遗传学 理论计算机科学 医学 病理
作者
Yuwei Guo,Ming Yi
出处
期刊:Briefings in Functional Genomics [Oxford University Press]
卷期号:23 (4): 384-394 被引量:5
标识
DOI:10.1093/bfgp/elad042
摘要

Abstract Circular RNAs (circRNAs) are a class of noncoding RNA molecules featuring a closed circular structure. They have been proved to play a significant role in the reduction of many diseases. Besides, many researches in clinical diagnosis and treatment of disease have revealed that circRNA can be considered as a potential biomarker. Therefore, understanding the association of circRNA and diseases can help to forecast some disorders of life activities. However, traditional biological experimental methods are time-consuming. The most common method for circRNA–disease association prediction on the basis of machine learning can avoid this, which relies on diverse data. Nevertheless, topological information of circRNA and disease usually is not involved in these methods. Moreover, circRNAs can be associated with diseases through miRNAs. With these considerations, we proposed a novel method, named THGNCDA, to predict the association between circRNAs and diseases. Specifically, for a certain pair of circRNA and disease, we employ a graph neural network with attention to learn the importance of its each neighbor. In addition, we use a multilayer convolutional neural network to explore the relationship of a circRNA–disease pair based on their attributes. When calculating embeddings, we introduce the information of miRNAs. The results of experiments show that THGNCDA outperformed the SOTA methods. In addition, it can be observed that our method gives a better recall rate. To confirm the significance of attention, we conducted extensive ablation studies. Case studies on Urinary Bladder and Prostatic Neoplasms further show THGNCDA’s ability in discovering known relationships between circRNA candidates and diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zzzyyyuuu完成签到 ,获得积分10
刚刚
刚刚
1秒前
以柠发布了新的文献求助30
2秒前
无花果应助西瓜采纳,获得10
2秒前
芸沐发布了新的文献求助10
2秒前
max发布了新的文献求助10
2秒前
孙刚发布了新的文献求助10
3秒前
叮当发布了新的文献求助10
3秒前
舒心的依风完成签到,获得积分10
3秒前
专业美女制造完成签到,获得积分10
3秒前
cure发布了新的文献求助10
3秒前
3秒前
薇薇安发布了新的文献求助10
4秒前
4秒前
ZZZ完成签到,获得积分10
4秒前
禁止通行发布了新的文献求助10
4秒前
酷酷的傲之完成签到,获得积分10
5秒前
Ava应助枝江小学生采纳,获得10
5秒前
5秒前
5秒前
6秒前
6秒前
Clown完成签到,获得积分10
7秒前
7秒前
囿于一隅完成签到,获得积分10
8秒前
8秒前
酒笙完成签到,获得积分10
9秒前
Ava应助活泼的寄风采纳,获得10
10秒前
寒冷的世界完成签到 ,获得积分10
10秒前
行7发布了新的文献求助10
10秒前
帕尼灬尼发布了新的文献求助10
10秒前
Owen应助江边鸟采纳,获得30
10秒前
11秒前
认真柜子发布了新的文献求助10
13秒前
舒服的灵安完成签到 ,获得积分10
14秒前
爆米花应助执着的灵阳采纳,获得10
14秒前
JamesPei应助儒雅寻菱采纳,获得10
14秒前
Mars_1108发布了新的文献求助10
14秒前
忐忑的从露完成签到,获得积分20
14秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987021
求助须知:如何正确求助?哪些是违规求助? 3529365
关于积分的说明 11244629
捐赠科研通 3267729
什么是DOI,文献DOI怎么找? 1803932
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808635