THGNCDA: circRNA–disease association prediction based on triple heterogeneous graph network

计算生物学 疾病 环状RNA 生物 图形 计算机科学 非编码RNA 小RNA 生物信息学 机器学习 基因 遗传学 理论计算机科学 医学 病理
作者
Yuwei Guo,Ming Yi
出处
期刊:Briefings in Functional Genomics [Oxford University Press]
卷期号:23 (4): 384-394 被引量:5
标识
DOI:10.1093/bfgp/elad042
摘要

Abstract Circular RNAs (circRNAs) are a class of noncoding RNA molecules featuring a closed circular structure. They have been proved to play a significant role in the reduction of many diseases. Besides, many researches in clinical diagnosis and treatment of disease have revealed that circRNA can be considered as a potential biomarker. Therefore, understanding the association of circRNA and diseases can help to forecast some disorders of life activities. However, traditional biological experimental methods are time-consuming. The most common method for circRNA–disease association prediction on the basis of machine learning can avoid this, which relies on diverse data. Nevertheless, topological information of circRNA and disease usually is not involved in these methods. Moreover, circRNAs can be associated with diseases through miRNAs. With these considerations, we proposed a novel method, named THGNCDA, to predict the association between circRNAs and diseases. Specifically, for a certain pair of circRNA and disease, we employ a graph neural network with attention to learn the importance of its each neighbor. In addition, we use a multilayer convolutional neural network to explore the relationship of a circRNA–disease pair based on their attributes. When calculating embeddings, we introduce the information of miRNAs. The results of experiments show that THGNCDA outperformed the SOTA methods. In addition, it can be observed that our method gives a better recall rate. To confirm the significance of attention, we conducted extensive ablation studies. Case studies on Urinary Bladder and Prostatic Neoplasms further show THGNCDA’s ability in discovering known relationships between circRNA candidates and diseases.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
魔幻冰棍发布了新的文献求助10
1秒前
BowieHuang应助白白采纳,获得10
1秒前
mirrovo完成签到 ,获得积分10
1秒前
自然的平蓝完成签到,获得积分10
3秒前
深情安青应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
Linos应助科研通管家采纳,获得10
5秒前
蓝天应助科研通管家采纳,获得10
5秒前
情怀应助科研通管家采纳,获得10
5秒前
田様应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
蓝天应助科研通管家采纳,获得10
5秒前
情怀应助科研通管家采纳,获得10
5秒前
orixero应助科研通管家采纳,获得10
5秒前
小蘑菇应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
爆米花应助1816013153采纳,获得30
5秒前
爆米花应助科研通管家采纳,获得10
5秒前
蓝天应助科研通管家采纳,获得10
5秒前
汉堡包应助科研通管家采纳,获得10
5秒前
科研菜j应助科研通管家采纳,获得20
6秒前
wanci应助科研通管家采纳,获得10
6秒前
JamesPei应助科研通管家采纳,获得10
6秒前
蓝天应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
6秒前
6秒前
6秒前
Duke_ethan完成签到,获得积分10
10秒前
Arslan完成签到,获得积分20
13秒前
SUN完成签到,获得积分10
16秒前
闪闪航空完成签到,获得积分10
16秒前
22秒前
科研通AI2S应助好好哒采纳,获得20
25秒前
科研通AI6应助sssshhh采纳,获得10
25秒前
25秒前
26秒前
30秒前
sevenhill应助Xjx6519采纳,获得30
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557938
求助须知:如何正确求助?哪些是违规求助? 4642910
关于积分的说明 14669614
捐赠科研通 4584414
什么是DOI,文献DOI怎么找? 2514801
邀请新用户注册赠送积分活动 1488970
关于科研通互助平台的介绍 1459614