Skeleton-Based Gesture Recognition With Learnable Paths and Signature Features

计算机科学 判别式 模式识别(心理学) 卷积神经网络 人工智能 特征提取 路径(计算) 图形 签名(拓扑) 运动学 理论计算机科学 数学 几何学 经典力学 物理 程序设计语言
作者
Jiale Cheng,Dongzi Shi,Chenyang Li,Yu Li,Hao Ni,Lianwen Jin,Xin Zhang
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:26: 3951-3961 被引量:1
标识
DOI:10.1109/tmm.2023.3318242
摘要

For the skeleton-based gesture recognition, graph convolutional networks (GCNs) have achieved remarkable performance since the human skeleton is a natural graph. However, the biological structure might not be the crucial one for motion analysis. Also, spatial differential information like joint distance and angle between bones may be overlooked during the graph convolution. In this paper, we focus on obtaining meaningful joint groups and extracting their discriminative features by the path signature (PS) theory. Firstly, to characterize the constraints and dependencies of various joints, we propose three types of paths, i.e., spatial, temporal, and learnable path. Especially, a learnable path generation mechanism can group joints together that are not directly connected or far away, according to their kinematic characteristic. Secondly, to obtain informative and compact features, a deep integration of PS with few parameters are introduced. All the computational process is packed into two modules, i.e., spatial-temporal path signature module (ST-PSM) and learnable path signature module (L-PSM) for the convenience of utilization. They are plug-and-play modules available for any neural network like CNNs and GCNs to enhance the feature extraction ability. Extensive experiments have conducted on three mainstream datasets (ChaLearn 2013, ChaLearn 2016, and AUTSL). We achieved the state-of-the-art results with simpler framework and much smaller model size. By inserting our two modules into the several GCN-based networks, we can observe clear improvements demonstrating the great effectiveness of our proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sunrise完成签到,获得积分10
1秒前
wanci应助要开心采纳,获得10
1秒前
1秒前
冷艳笑卉发布了新的文献求助10
2秒前
ColdSunWu完成签到,获得积分10
2秒前
binbin完成签到,获得积分10
2秒前
johnny发布了新的文献求助10
2秒前
虚幻的靖柔完成签到,获得积分20
2秒前
小轩爱晴发布了新的文献求助10
2秒前
清爽的箴应助mei采纳,获得10
3秒前
嘻嘻完成签到,获得积分10
5秒前
5秒前
2024kyt完成签到 ,获得积分10
5秒前
5秒前
超级路人发布了新的文献求助10
5秒前
聪慧小燕发布了新的文献求助10
5秒前
完美世界应助甜甜乌采纳,获得30
6秒前
7秒前
充电宝应助淡淡的归尘采纳,获得10
7秒前
7秒前
耳火发布了新的文献求助10
7秒前
junxi完成签到,获得积分10
8秒前
8秒前
8秒前
愉快的戎完成签到,获得积分10
10秒前
所所应助聪慧小燕采纳,获得10
11秒前
zyf发布了新的文献求助10
11秒前
dove发布了新的文献求助10
12秒前
李健的小迷弟应助王醉山采纳,获得10
14秒前
科研小白完成签到,获得积分10
14秒前
冷艳笑卉完成签到,获得积分10
15秒前
清修发布了新的文献求助10
15秒前
谁家的花花完成签到,获得积分10
15秒前
15秒前
神内打工人完成签到 ,获得积分10
16秒前
16秒前
eternal完成签到,获得积分10
16秒前
杰杰完成签到,获得积分20
17秒前
nini发布了新的文献求助10
17秒前
田様应助Chenbiao采纳,获得10
17秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3308756
求助须知:如何正确求助?哪些是违规求助? 2942097
关于积分的说明 8507396
捐赠科研通 2617067
什么是DOI,文献DOI怎么找? 1429972
科研通“疑难数据库(出版商)”最低求助积分说明 663969
邀请新用户注册赠送积分活动 649186