Skeleton-Based Gesture Recognition With Learnable Paths and Signature Features

计算机科学 判别式 模式识别(心理学) 卷积神经网络 人工智能 特征提取 路径(计算) 图形 签名(拓扑) 运动学 理论计算机科学 数学 几何学 经典力学 物理 程序设计语言
作者
Jiale Cheng,Dongzi Shi,Chenyang Li,Yu Li,Hao Ni,Lianwen Jin,Xin Zhang
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:26: 3951-3961 被引量:7
标识
DOI:10.1109/tmm.2023.3318242
摘要

For the skeleton-based gesture recognition, graph convolutional networks (GCNs) have achieved remarkable performance since the human skeleton is a natural graph. However, the biological structure might not be the crucial one for motion analysis. Also, spatial differential information like joint distance and angle between bones may be overlooked during the graph convolution. In this article, we focus on obtaining meaningful joint groups and extracting their discriminative features by the path signature (PS) theory. Firstly, to characterize the constraints and dependencies of various joints, we propose three types of paths, i.e., spatial, temporal, and learnable path. Especially, a learnable path generation mechanism can group joints together that are not directly connected or far away, according to their kinematic characteristic. Secondly, to obtain informative and compact features, a deep integration of PS with few parameters are introduced. All the computational process is packed into two modules, i.e., spatial-temporal path signature module (ST-PSM) and learnable path signature module (L-PSM) for the convenience of utilization. They are plug-and-play modules available for any neural network like CNNs and GCNs to enhance the feature extraction ability. Extensive experiments have conducted on three mainstream datasets (ChaLearn 2013, ChaLearn 2016, and AUTSL). We achieved the state-of-the-art results with simpler framework and much smaller model size. By inserting our two modules into the several GCN-based networks, we can observe clear improvements demonstrating the great effectiveness of our proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
ss完成签到,获得积分20
1秒前
1秒前
九姑娘完成签到 ,获得积分10
2秒前
独特元蝶发布了新的文献求助10
2秒前
Hello应助ZHOU采纳,获得10
2秒前
传奇3应助nqbscxttdh采纳,获得10
3秒前
3秒前
CipherSage应助一个西藏采纳,获得10
4秒前
4秒前
铁塔凌云完成签到,获得积分10
5秒前
5秒前
香蕉觅云应助freesialll采纳,获得10
6秒前
6秒前
背后寒烟发布了新的文献求助10
7秒前
7秒前
7秒前
wanci应助sanjun采纳,获得10
9秒前
9秒前
9秒前
烟花应助能干水杯采纳,获得10
10秒前
10秒前
big ben完成签到 ,获得积分0
11秒前
11秒前
情怀应助siriuslee99采纳,获得10
12秒前
雪意发布了新的文献求助10
12秒前
13秒前
小魏发布了新的文献求助10
13秒前
王柯予发布了新的文献求助10
14秒前
sera发布了新的文献求助10
14秒前
心碎的黄焖鸡完成签到 ,获得积分10
15秒前
小椰喃喃完成签到,获得积分10
15秒前
15秒前
平淡的绮彤完成签到,获得积分10
16秒前
16秒前
16秒前
17秒前
小马甲应助沉静胜采纳,获得10
17秒前
pihriyyy完成签到,获得积分10
19秒前
qss8807发布了新的文献求助10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646573
求助须知:如何正确求助?哪些是违规求助? 4771751
关于积分的说明 15035677
捐赠科研通 4805321
什么是DOI,文献DOI怎么找? 2569625
邀请新用户注册赠送积分活动 1526601
关于科研通互助平台的介绍 1485858