已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Enhancement of water collection efficiency by optimizing hole size and ratio of hydrophilic-superhydrophobic area on hybrid surfaces

材料科学 表面积体积比 纵横比(航空) 纳米技术 环境科学 化学工程 复合材料 工程类
作者
Chuang Liu,Ruoyu Sun,Jing Zhao,Yixian Hu,Jiliang Mo
出处
期刊:Journal of environmental chemical engineering [Elsevier]
卷期号:11 (5): 111082-111082 被引量:8
标识
DOI:10.1016/j.jece.2023.111082
摘要

The scarcity of freshwater resources has had a significant impact on human life and wildlife survival. Fog harvesting has emerged as one of the most effective solutions to alleviate water scarcity in arid areas. At present, researchers have focused on optimizing hybrid surface designs to capture fog from the air and convert it into water droplets. Here, we prepared a hybrid surface for fog harvesting by a combination of chemical etching and surface modification with mechanical drilling. By adjusting the hole size and the ratio of hydrophilic-superhydrophobic area of the hybrid surfaces, the water collection efficiency was improved. The results indicated that the hole size affected the critical size of sliding water droplets, and the ratio of hydrophilic-superhydrophobic area affected the water droplet sliding speed and water collection frequency, thereby affecting the water collection efficiency per unit time. Therefore, by matching a specific hole size and ratio of hydrophilic-superhydrophobic area, the water collection volume and mobility of water droplets on the hybrid surfaces reached a dynamic equilibrium, achieving the optimal water collection efficiency. When the hole size was 1.0 mm, and the ratio of hydrophilic-superhydrophobic area was 1:4, the highest water collection rate was 805 mg/cm2/h, and the water collection efficiency was 17.5 %. By optimizing the hole size and the ratio of hydrophilic-superhydrophobic area, the water collection efficiency of the hybrid surface was maximized. This lays a solid foundation for promoting the practical applications of hybrid surfaces for fog harvesting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
归尘应助kevin1018采纳,获得10
1秒前
hdy完成签到,获得积分10
1秒前
1秒前
欣慰元蝶完成签到,获得积分20
3秒前
4秒前
小乐完成签到,获得积分10
5秒前
6秒前
星星泡饭完成签到,获得积分10
8秒前
8秒前
科研通AI40应助阿布采纳,获得10
9秒前
10秒前
Achuia完成签到,获得积分10
10秒前
也曾年少完成签到,获得积分10
11秒前
夏天猫发布了新的文献求助10
11秒前
星星泡饭发布了新的文献求助10
12秒前
13秒前
Ccry_发布了新的文献求助10
13秒前
14秒前
linxi发布了新的文献求助10
15秒前
wdn完成签到,获得积分10
17秒前
18秒前
布丁发布了新的文献求助10
19秒前
蛋蛋发布了新的文献求助20
20秒前
Paopaoxuan应助kaka采纳,获得10
20秒前
桃儿完成签到 ,获得积分10
20秒前
xiaomeng完成签到 ,获得积分10
23秒前
28秒前
kevin1018完成签到,获得积分10
29秒前
30秒前
Mm完成签到,获得积分10
30秒前
30秒前
32秒前
白华苍松发布了新的文献求助10
33秒前
科研通AI40应助蛋蛋采纳,获得10
36秒前
37秒前
mmtm123完成签到,获得积分10
38秒前
小鲸鱼应助热心纸飞机采纳,获得10
39秒前
虚心寻双发布了新的文献求助100
41秒前
马华化完成签到,获得积分0
41秒前
高分求助中
Genetics: From Genes to Genomes 3000
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Diabetes: miniguías Asklepios 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3471259
求助须知:如何正确求助?哪些是违规求助? 3064129
关于积分的说明 9087605
捐赠科研通 2754938
什么是DOI,文献DOI怎么找? 1511647
邀请新用户注册赠送积分活动 698541
科研通“疑难数据库(出版商)”最低求助积分说明 698423