已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Rasterizing CO2 emissions and characterizing their trends via an enhanced population-light index at multiple scales in China during 2013–2019

环境科学 人口 索引(排版) 线性回归 统计 气象学 大气科学 自然地理学 地理 数学 计算机科学 人口学 地质学 万维网 社会学
作者
Bin Guo,Tingting Xie,Wencai Zhang,Haojie Wu,Dingming Zhang,Xiaowei Zhu,Xuying Ma,Min Wu,Pingping Luo
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:905: 167309-167309 被引量:14
标识
DOI:10.1016/j.scitotenv.2023.167309
摘要

Climate change caused by CO2 emissions (CE) has received widespread global concerns. Obtaining precision CE data is necessary for achieving carbon peak and carbon neutrality. Significant deficiencies of existing CE datasets such as coarse spatial resolution and low precision can hardly meet the actual requirements. An enhanced population-light index (RPNTL) was developed in this study, which integrates the Nighttime Light Digital Number (DN) Value from the National Polar-orbiting Partnership (NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) and population density to improve CE estimation accuracy. The CE from the Carbon Emission Accounts & Datasets (CEADS) was divided into three sectors, namely urban, industrial, and rural, to differentiate the heterogeneity of CE in each sector. The ordinary least square (OLS), geographically weighted regression (GWR), temporally weighted regression (TWR), and geographically and temporally weighted regression (GTWR) models were employed to establish the quantitative relationship between RPNTL and CE for each sector. The optimal model was determined through model comparison and precision evaluation and was utilized to rasterize CE for urban, industrial, and rural areas. Additionally, hot spot analysis, trend analysis, and standard deviation ellipses were introduced to demonstrate the spatiotemporal dynamic characteristics of CE at multiple scales. The performance of the GTWR outperformed other methods in estimating CE. The enhanced RPNTL demonstrated a higher coefficient of determination (R2 = 0.95) than the NTL (R2 = 0.92) in predicting CE, particularly in rural regions where the R2 value increased from 0.76 to 0.81. From 2013 to 2019, high CE was observed in eastern and northern China, while a decreasing trend was detected in northeastern China and Chengdu-Chongqing. Conversely, the Yangtze River Delta, Pearl River Delta, Fenwei Plain, and Henan Province showed an increasing trend. The center of gravity for industrial and rural CE is shifting towards western regions, whereas that for urban CE is moving northward. This study provides valuable insights for decision-making on CE control.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
苏卿应助法知一采纳,获得10
1秒前
1秒前
慕青应助rong采纳,获得10
3秒前
Ttttt发布了新的文献求助10
4秒前
6秒前
ding应助小汤圆采纳,获得10
6秒前
Hcir完成签到 ,获得积分10
7秒前
优美柏柳发布了新的文献求助10
7秒前
Jin完成签到,获得积分10
8秒前
9秒前
10秒前
小晖晖完成签到,获得积分10
10秒前
12秒前
amysteryboy发布了新的文献求助10
12秒前
科研通AI2S应助cover12采纳,获得10
12秒前
rong完成签到,获得积分10
12秒前
科研通AI2S应助shanghe采纳,获得10
13秒前
dpp发布了新的文献求助10
13秒前
沉淀完成签到 ,获得积分10
15秒前
路路有为完成签到 ,获得积分10
15秒前
Dx发布了新的文献求助10
17秒前
17秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
Lucas应助科研通管家采纳,获得10
17秒前
共享精神应助科研通管家采纳,获得10
17秒前
慕青应助科研通管家采纳,获得10
17秒前
带头大哥应助科研通管家采纳,获得100
17秒前
优美柏柳完成签到,获得积分10
18秒前
18秒前
19秒前
wanci应助amysteryboy采纳,获得10
20秒前
21秒前
22秒前
22秒前
霜序发布了新的文献求助10
23秒前
魔幻熊猫发布了新的文献求助10
23秒前
24秒前
沉思、发布了新的文献求助10
24秒前
25秒前
25秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
XAFS for Everyone (2nd Edition) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3133652
求助须知:如何正确求助?哪些是违规求助? 2784626
关于积分的说明 7767874
捐赠科研通 2439828
什么是DOI,文献DOI怎么找? 1297069
科研通“疑难数据库(出版商)”最低求助积分说明 624840
版权声明 600791