Rasterizing CO2 emissions and characterizing their trends via an enhanced population-light index at multiple scales in China during 2013–2019

环境科学 人口 索引(排版) 线性回归 统计 气象学 大气科学 自然地理学 地理 数学 计算机科学 人口学 社会学 万维网 地质学
作者
Bin Guo,Tingting Xie,Wencai Zhang,Haojie Wu,Dingming Zhang,Xiaowei Zhu,Xuying Ma,Min Wu,Pingping Luo
出处
期刊:Science of The Total Environment [Elsevier BV]
卷期号:905: 167309-167309 被引量:14
标识
DOI:10.1016/j.scitotenv.2023.167309
摘要

Climate change caused by CO2 emissions (CE) has received widespread global concerns. Obtaining precision CE data is necessary for achieving carbon peak and carbon neutrality. Significant deficiencies of existing CE datasets such as coarse spatial resolution and low precision can hardly meet the actual requirements. An enhanced population-light index (RPNTL) was developed in this study, which integrates the Nighttime Light Digital Number (DN) Value from the National Polar-orbiting Partnership (NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) and population density to improve CE estimation accuracy. The CE from the Carbon Emission Accounts & Datasets (CEADS) was divided into three sectors, namely urban, industrial, and rural, to differentiate the heterogeneity of CE in each sector. The ordinary least square (OLS), geographically weighted regression (GWR), temporally weighted regression (TWR), and geographically and temporally weighted regression (GTWR) models were employed to establish the quantitative relationship between RPNTL and CE for each sector. The optimal model was determined through model comparison and precision evaluation and was utilized to rasterize CE for urban, industrial, and rural areas. Additionally, hot spot analysis, trend analysis, and standard deviation ellipses were introduced to demonstrate the spatiotemporal dynamic characteristics of CE at multiple scales. The performance of the GTWR outperformed other methods in estimating CE. The enhanced RPNTL demonstrated a higher coefficient of determination (R2 = 0.95) than the NTL (R2 = 0.92) in predicting CE, particularly in rural regions where the R2 value increased from 0.76 to 0.81. From 2013 to 2019, high CE was observed in eastern and northern China, while a decreasing trend was detected in northeastern China and Chengdu-Chongqing. Conversely, the Yangtze River Delta, Pearl River Delta, Fenwei Plain, and Henan Province showed an increasing trend. The center of gravity for industrial and rural CE is shifting towards western regions, whereas that for urban CE is moving northward. This study provides valuable insights for decision-making on CE control.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
背后丹妗发布了新的文献求助10
刚刚
1秒前
1秒前
小凯同学完成签到 ,获得积分10
1秒前
hanleiharry1发布了新的文献求助10
3秒前
3秒前
3秒前
善良冷松发布了新的文献求助10
3秒前
5秒前
在水一方应助一定行采纳,获得10
6秒前
6秒前
6秒前
NexusExplorer应助快乐一江采纳,获得10
7秒前
7秒前
科研通AI5应助Lcccccc采纳,获得10
7秒前
在水一方应助杰2580采纳,获得10
10秒前
幸福大白发布了新的文献求助30
10秒前
Jasmine发布了新的文献求助10
10秒前
11秒前
善良冷松完成签到,获得积分10
11秒前
11秒前
善学以致用应助fengliurencai采纳,获得10
12秒前
个别完成签到,获得积分10
13秒前
13秒前
13秒前
14秒前
sihanzhiyu完成签到,获得积分20
15秒前
15秒前
wdy111应助ASZXDW采纳,获得20
17秒前
17秒前
wsj发布了新的文献求助10
17秒前
旧梦发布了新的文献求助10
17秒前
东晓发布了新的文献求助10
18秒前
科研通AI5应助科研通管家采纳,获得10
18秒前
bkagyin应助科研通管家采纳,获得10
18秒前
共享精神应助科研通管家采纳,获得10
18秒前
852应助科研通管家采纳,获得10
18秒前
NexusExplorer应助科研通管家采纳,获得10
18秒前
酷波er应助科研通管家采纳,获得10
19秒前
从容的鲜花完成签到,获得积分10
19秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989390
求助须知:如何正确求助?哪些是违规求助? 3531487
关于积分的说明 11254109
捐赠科研通 3270153
什么是DOI,文献DOI怎么找? 1804887
邀请新用户注册赠送积分活动 882087
科研通“疑难数据库(出版商)”最低求助积分说明 809174