三斜晶系
化学
晶体结构
结晶学
氢键
范德瓦尔斯力
氧化物
分子
电化学
单晶
Crystal(编程语言)
电极
有机化学
物理化学
计算机科学
程序设计语言
作者
Cansu Topkaya,Derya Bal Altuntaş,Tolga Göktürk,Sultan Kıncal,Tuncer Hökelek,Ramazan Güp
标识
DOI:10.1016/j.molstruc.2023.136689
摘要
In this paper, we report the one-step, metal catalyst-free synthesis of 6-(4-chlorophenyl)-3,3-dimethyl-4-(N-oxide)-1,2,3,4-tetrahydro-1,2,4-triazine using 2,4-dihydroxyacetophenone and p‑chloro isonitrosophenyl hydrazine and its full characterization including single crystal X-ray analysis. A simple and straightforward method for the synthesis is presented and the compound is obtained in a moderate yield and high purity. It's molecular and crystal structures were determined and found that It belongs to triclinic system P -1 space group with a = 5.9173 (2) Å, b = 13.3113 (4) Å, c = 14.3963 (4) Å, α = 97.583 (2) °, β = 93.207 (2) °, γ = 91.378 (2) °, Z = 4 and V = 1121.71 (6) Å3. In the crystal structure, the intermolecular NH⋯O hydrogen bonds link the molecules into infinite chains along the a-axis direction. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (48.4 %), H⋯C/C⋯H (16.6 %), H⋯O/O⋯H (13.7 %) and H⋯CI/CI⋯H (11.0 %) interactions. Hydrogen bonding and van der Waals interactions are the dominant interactions in the crystal packing. The electrochemical characterizations and the supercapacitor performances of the compound were also investigated. Although, the pretreated porous carbonaceous materials or nanostructures provide superior surface enhancement properties in terms of the electrode modifications for a wide range of electrochemical applications, here we found a better performance for the proposed single crystal hydrazone as an electrode modifier.
科研通智能强力驱动
Strongly Powered by AbleSci AI