声学
螺旋(铁路)
推进
微流控
仿生学
3d打印
计算机科学
纳米技术
材料科学
机械工程
物理
工程类
生物医学工程
航空航天工程
作者
Yong Deng,Adrian Paskert,Zhiyuan Zhang,Raphael Wittkowski,Daniel Ahmed
出处
期刊:Science Advances
[American Association for the Advancement of Science (AAAS)]
日期:2023-09-20
卷期号:9 (38)
被引量:27
标识
DOI:10.1126/sciadv.adh5260
摘要
As a next-generation toolkit, microrobots can transform a wide range of fields, including micromanufacturing, electronics, microfluidics, tissue engineering, and medicine. While still in their infancy, acoustically actuated microrobots are becoming increasingly attractive. However, the interaction of acoustics with microstructure geometry is poorly understood, and its study is necessary for developing next-generation acoustically powered microrobots. We present an acoustically driven helical microrobot with a length of 350 μm and a diameter of 100 μm that is capable of locomotion using a fin-like double-helix microstructure. This microrobot responds to sound stimuli at ~12 to 19 kHz and mimics the spiral motion of natural microswimmers such as spirochetes. The asymmetric double helix interacts with the incident acoustic field, inducing a propulsion torque that causes the microrobot to rotate around its long axis. Moreover, our microrobot has the unique feature of its directionality being switchable by simply tuning the acoustic frequency. We demonstrate this locomotion in 2D and 3D artificial vasculatures using a single sound source.
科研通智能强力驱动
Strongly Powered by AbleSci AI