CT-based deep learning radiomics nomogram for the prediction of pathological grade in bladder cancer: a multicenter study

医学 列线图 队列 无线电技术 人工智能 放射科 机器学习 肿瘤科 病理 计算机科学
作者
Hongzheng Song,Jing Wang,Boyang Yu,Na Li,Yonghua Huang,Rui Sun,Bo Wang,Pei Nie,Feng Hou,Chencui Huang,Meng Zhang,Hexiang Wang
出处
期刊:Cancer Imaging [Springer Nature]
卷期号:23 (1) 被引量:5
标识
DOI:10.1186/s40644-023-00609-z
摘要

Abstract Background To construct and assess a computed tomography (CT)-based deep learning radiomics nomogram (DLRN) for predicting the pathological grade of bladder cancer (BCa) preoperatively. Methods We retrospectively enrolled 688 patients with BCa (469 in the training cohort, 219 in the external test cohort) who underwent surgical resection. We extracted handcrafted radiomics (HCR) features and deep learning (DL) features from three-phase CT images (including corticomedullary-phase [C-phase], nephrographic-phase [N-phase] and excretory-phase [E-phase]). We constructed predictive models using 11 machine learning classifiers, and we developed a DLRN by combining the radiomic signature with clinical factors. We assessed performance and clinical utility of the models with reference to the area under the curve (AUC), calibration curve, and decision curve analysis (DCA). Results The support vector machine (SVM) classifier model based on HCR and DL combined features was the best radiomic signature, with AUC values of 0.953 and 0.943 in the training cohort and the external test cohort, respectively. The AUC values of the clinical model in the training cohort and the external test cohort were 0.752 and 0.745, respectively. DLRN performed well on both data cohorts (training cohort: AUC = 0.961; external test cohort: AUC = 0.947), and outperformed the clinical model and the optimal radiomic signature. Conclusion The proposed CT-based DLRN showed good diagnostic capability in distinguishing between high and low grade BCa.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lt_zyk完成签到,获得积分10
刚刚
刚刚
wary发布了新的文献求助10
1秒前
清爽老九完成签到,获得积分10
1秒前
Orange应助张鱼小丸子采纳,获得10
1秒前
2秒前
3秒前
雨夜星空完成签到,获得积分10
3秒前
饱满的半青完成签到 ,获得积分10
4秒前
4秒前
务实盼海发布了新的文献求助10
4秒前
Jouleken完成签到,获得积分10
4秒前
5秒前
zq00完成签到,获得积分10
5秒前
5秒前
斯文败类应助独木舟采纳,获得10
5秒前
易哒哒完成签到,获得积分10
5秒前
CCL应助QXS采纳,获得50
6秒前
大方安白完成签到,获得积分10
6秒前
Xxaaa完成签到,获得积分20
6秒前
张小敏完成签到,获得积分10
7秒前
8秒前
8秒前
8秒前
科研通AI2S应助Zhong采纳,获得10
8秒前
yidashi完成签到,获得积分10
8秒前
Kelvin.Tsi完成签到 ,获得积分10
8秒前
Island发布了新的文献求助10
9秒前
hu970发布了新的文献求助10
9秒前
九九发布了新的文献求助10
9秒前
123456完成签到,获得积分10
9秒前
BareBear应助龙妍琳采纳,获得10
9秒前
赘婿应助wary采纳,获得10
10秒前
小蘑菇应助wary采纳,获得10
10秒前
上官若男应助wary采纳,获得10
10秒前
李爱国应助木子采纳,获得10
10秒前
烟花应助马佳凯采纳,获得10
10秒前
10秒前
LYL完成签到,获得积分10
11秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762