Learning and forgetting interactions within a collaborative human-centric manufacturing network

遗忘 计算机科学 外包 调度(生产过程) 运筹学 延迟(音频) 学习效果 作业车间调度 分布式计算 数学优化 工业工程 操作系统 工程类 微观经济学 经济 法学 政治学 数学 地铁列车时刻表 语言学 哲学 电信
作者
Mohammad Asghari,Hamid Afshari,Mohamad Y. Jaber,Cory Searcy
出处
期刊:European Journal of Operational Research [Elsevier BV]
卷期号:313 (3): 977-991 被引量:2
标识
DOI:10.1016/j.ejor.2023.09.020
摘要

Learning and forgetting (LaF) phenomena are characteristic of labor-intensive production and service industries. To mitigate the effects of LaF in a human-centric manufacturing system integrated with outsourcing, managers need to coordinate their decisions with partners for assigning operations and scheduling processes following a hierarchy. A model that addresses this should consider the expected latency of various tasks across assignments and production sequences and similarities among jobs as that affects learning. This paper develops a novel bi-level LaF model to help determine the leader-follower decisions in a decentralized network. It models the learning concept as a factor of task execution order and task variety. The mixed-integer non-linear optimization model determines the best order coordination and scheduling scheme by minimizing the processing, operating, and holding costs and penalties for missing deadlines. This study also develops an efficient column-and-constraint generation algorithm based on the duplication method, which enables solving bi-level models in which the lower-level model includes integer variables. This study also provides an illustrative real-sized example to validate the model and prove the efficiency of our resolution method. The results indicate that adopting compromise solutions enables preoccupied workers to be released earlier than expected, reducing the costs associated with learning and forgetting (due to latency). Despite the effects of LaF and the decentralized structure of the supply chain, which includes rising network costs, the schedules become more precise, and the cost balance among actors effectively increases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
娃哈哈完成签到,获得积分10
刚刚
lemon完成签到,获得积分10
1秒前
illusion完成签到,获得积分10
1秒前
丘比特应助Trinity_ZHAN采纳,获得30
1秒前
M先生完成签到,获得积分10
1秒前
1秒前
1秒前
赘婿应助义气绿柳采纳,获得10
2秒前
zjh33发布了新的文献求助10
3秒前
liherong完成签到,获得积分10
3秒前
完美梨愁完成签到 ,获得积分10
3秒前
3秒前
yangjinru完成签到 ,获得积分10
3秒前
aixin完成签到,获得积分10
4秒前
阿斯顿发布了新的文献求助10
4秒前
YWD完成签到,获得积分10
4秒前
4秒前
xu发布了新的文献求助10
5秒前
罐罐儿完成签到,获得积分0
5秒前
leeOOO完成签到,获得积分10
5秒前
5秒前
刘zx完成签到,获得积分10
5秒前
5秒前
肥仔完成签到 ,获得积分20
5秒前
小郭完成签到 ,获得积分10
6秒前
快乐小子发布了新的文献求助10
6秒前
等待小刺猬完成签到,获得积分10
6秒前
纯真的伟诚完成签到,获得积分10
7秒前
研友_enP05n完成签到,获得积分10
7秒前
badadaa完成签到 ,获得积分10
7秒前
Sciiiiiii发布了新的文献求助10
8秒前
qaz给qaz的求助进行了留言
9秒前
ideal完成签到 ,获得积分10
9秒前
快乐枫发布了新的文献求助10
9秒前
小二郎应助Raye采纳,获得10
10秒前
yu完成签到,获得积分10
10秒前
10秒前
幽默小虾米完成签到,获得积分10
11秒前
大白菜完成签到,获得积分10
11秒前
magicyang完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4571205
求助须知:如何正确求助?哪些是违规求助? 3992388
关于积分的说明 12357887
捐赠科研通 3665364
什么是DOI,文献DOI怎么找? 2020042
邀请新用户注册赠送积分活动 1054379
科研通“疑难数据库(出版商)”最低求助积分说明 941973