Learning and forgetting interactions within a collaborative human-centric manufacturing network

遗忘 计算机科学 外包 调度(生产过程) 运筹学 延迟(音频) 学习效果 作业车间调度 分布式计算 数学优化 工业工程 操作系统 工程类 微观经济学 经济 法学 政治学 数学 地铁列车时刻表 语言学 哲学 电信
作者
Mohammad Asghari,Hamid Afshari,Mohamad Y. Jaber,Cory Searcy
出处
期刊:European Journal of Operational Research [Elsevier BV]
卷期号:313 (3): 977-991
标识
DOI:10.1016/j.ejor.2023.09.020
摘要

Learning and forgetting (LaF) phenomena are characteristic of labor-intensive production and service industries. To mitigate the effects of LaF in a human-centric manufacturing system integrated with outsourcing, managers need to coordinate their decisions with partners for assigning operations and scheduling processes following a hierarchy. A model that addresses this should consider the expected latency of various tasks across assignments and production sequences and similarities among jobs as that affects learning. This paper develops a novel bi-level LaF model to help determine the leader-follower decisions in a decentralized network. It models the learning concept as a factor of task execution order and task variety. The mixed-integer non-linear optimization model determines the best order coordination and scheduling scheme by minimizing the processing, operating, and holding costs and penalties for missing deadlines. This study also develops an efficient column-and-constraint generation algorithm based on the duplication method, which enables solving bi-level models in which the lower-level model includes integer variables. This study also provides an illustrative real-sized example to validate the model and prove the efficiency of our resolution method. The results indicate that adopting compromise solutions enables preoccupied workers to be released earlier than expected, reducing the costs associated with learning and forgetting (due to latency). Despite the effects of LaF and the decentralized structure of the supply chain, which includes rising network costs, the schedules become more precise, and the cost balance among actors effectively increases.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
钙片儿完成签到,获得积分10
刚刚
清脆立果完成签到,获得积分10
1秒前
1秒前
粗犷的凌兰完成签到,获得积分10
1秒前
1秒前
panjunlu发布了新的文献求助10
1秒前
2秒前
www0717发布了新的文献求助10
2秒前
zzz完成签到,获得积分10
3秒前
研友_ZlxxzZ完成签到,获得积分10
3秒前
归尘应助XS_QI采纳,获得10
3秒前
4秒前
Attempter完成签到,获得积分20
4秒前
Du发布了新的文献求助10
4秒前
钙片儿发布了新的文献求助10
4秒前
5秒前
大眼睛的草莓完成签到,获得积分10
5秒前
文卿完成签到,获得积分10
5秒前
5秒前
酷酷李可爱婕完成签到 ,获得积分10
6秒前
乐乐应助张阳采纳,获得10
7秒前
7秒前
7秒前
领导范儿应助珂小小采纳,获得10
7秒前
666完成签到,获得积分10
7秒前
假装有昵称完成签到,获得积分10
7秒前
7秒前
zyy完成签到,获得积分10
8秒前
LinglongCai完成签到 ,获得积分10
9秒前
wdy111应助jjjjchou采纳,获得20
9秒前
胡博云完成签到,获得积分10
9秒前
11完成签到,获得积分10
10秒前
SL完成签到,获得积分10
10秒前
慕青应助笑点低的不采纳,获得10
10秒前
铜W完成签到,获得积分20
10秒前
10秒前
林夏发布了新的文献求助10
11秒前
凉凉盛夏完成签到,获得积分10
11秒前
123完成签到,获得积分10
11秒前
八百标兵奔北坡完成签到,获得积分10
11秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986641
求助须知:如何正确求助?哪些是违规求助? 3529109
关于积分的说明 11243520
捐赠科研通 3267633
什么是DOI,文献DOI怎么找? 1803801
邀请新用户注册赠送积分活动 881207
科研通“疑难数据库(出版商)”最低求助积分说明 808582