Learning and forgetting interactions within a collaborative human-centric manufacturing network

遗忘 计算机科学 外包 调度(生产过程) 运筹学 延迟(音频) 学习效果 作业车间调度 分布式计算 数学优化 工业工程 操作系统 工程类 微观经济学 经济 法学 政治学 数学 地铁列车时刻表 语言学 哲学 电信
作者
Mohammad Asghari,Hamid Afshari,Mohamad Y. Jaber,Cory Searcy
出处
期刊:European Journal of Operational Research [Elsevier BV]
卷期号:313 (3): 977-991 被引量:2
标识
DOI:10.1016/j.ejor.2023.09.020
摘要

Learning and forgetting (LaF) phenomena are characteristic of labor-intensive production and service industries. To mitigate the effects of LaF in a human-centric manufacturing system integrated with outsourcing, managers need to coordinate their decisions with partners for assigning operations and scheduling processes following a hierarchy. A model that addresses this should consider the expected latency of various tasks across assignments and production sequences and similarities among jobs as that affects learning. This paper develops a novel bi-level LaF model to help determine the leader-follower decisions in a decentralized network. It models the learning concept as a factor of task execution order and task variety. The mixed-integer non-linear optimization model determines the best order coordination and scheduling scheme by minimizing the processing, operating, and holding costs and penalties for missing deadlines. This study also develops an efficient column-and-constraint generation algorithm based on the duplication method, which enables solving bi-level models in which the lower-level model includes integer variables. This study also provides an illustrative real-sized example to validate the model and prove the efficiency of our resolution method. The results indicate that adopting compromise solutions enables preoccupied workers to be released earlier than expected, reducing the costs associated with learning and forgetting (due to latency). Despite the effects of LaF and the decentralized structure of the supply chain, which includes rising network costs, the schedules become more precise, and the cost balance among actors effectively increases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
阿木木完成签到,获得积分10
1秒前
1秒前
整齐蛋挞发布了新的文献求助30
2秒前
都是知识点呐完成签到 ,获得积分10
2秒前
俏皮听寒给俏皮听寒的求助进行了留言
2秒前
香蕉觅云应助Han采纳,获得10
2秒前
嗯嗯完成签到 ,获得积分10
3秒前
927发布了新的文献求助10
4秒前
zhabgyyy发布了新的文献求助10
4秒前
完美世界应助周健采纳,获得30
5秒前
5秒前
同志发布了新的文献求助10
7秒前
8秒前
8秒前
xbj笑哈哈完成签到 ,获得积分10
8秒前
英俊的铭应助Venus采纳,获得10
8秒前
9秒前
10秒前
dawn发布了新的文献求助10
10秒前
诸葛藏藏完成签到,获得积分10
11秒前
可乐不加冰完成签到 ,获得积分10
11秒前
12秒前
裴荣华完成签到,获得积分10
12秒前
zzzz发布了新的文献求助20
12秒前
柠檬气泡饮完成签到,获得积分10
13秒前
13秒前
清脆如娆完成签到 ,获得积分10
13秒前
carrier_hc完成签到,获得积分0
14秒前
14秒前
万能图书馆应助蓝色冰芯采纳,获得10
15秒前
蓝桉完成签到,获得积分10
15秒前
杨皓文发布了新的文献求助10
15秒前
Mottri发布了新的文献求助10
15秒前
跳跃盼波发布了新的文献求助10
16秒前
疑夕发布了新的文献求助10
17秒前
神唐1发布了新的文献求助20
17秒前
18秒前
llay发布了新的文献求助10
18秒前
科研通AI5应助明亮如花采纳,获得10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Refractory Castable Engineering 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5182571
求助须知:如何正确求助?哪些是违规求助? 4369185
关于积分的说明 13605156
捐赠科研通 4220788
什么是DOI,文献DOI怎么找? 2314874
邀请新用户注册赠送积分活动 1313640
关于科研通互助平台的介绍 1262301