Learning and forgetting interactions within a collaborative human-centric manufacturing network

遗忘 计算机科学 外包 调度(生产过程) 运筹学 延迟(音频) 学习效果 作业车间调度 分布式计算 数学优化 工业工程 操作系统 工程类 微观经济学 经济 法学 政治学 数学 地铁列车时刻表 语言学 哲学 电信
作者
Mohammad Asghari,Hamid Afshari,Mohamad Y. Jaber,Cory Searcy
出处
期刊:European Journal of Operational Research [Elsevier BV]
卷期号:313 (3): 977-991 被引量:2
标识
DOI:10.1016/j.ejor.2023.09.020
摘要

Learning and forgetting (LaF) phenomena are characteristic of labor-intensive production and service industries. To mitigate the effects of LaF in a human-centric manufacturing system integrated with outsourcing, managers need to coordinate their decisions with partners for assigning operations and scheduling processes following a hierarchy. A model that addresses this should consider the expected latency of various tasks across assignments and production sequences and similarities among jobs as that affects learning. This paper develops a novel bi-level LaF model to help determine the leader-follower decisions in a decentralized network. It models the learning concept as a factor of task execution order and task variety. The mixed-integer non-linear optimization model determines the best order coordination and scheduling scheme by minimizing the processing, operating, and holding costs and penalties for missing deadlines. This study also develops an efficient column-and-constraint generation algorithm based on the duplication method, which enables solving bi-level models in which the lower-level model includes integer variables. This study also provides an illustrative real-sized example to validate the model and prove the efficiency of our resolution method. The results indicate that adopting compromise solutions enables preoccupied workers to be released earlier than expected, reducing the costs associated with learning and forgetting (due to latency). Despite the effects of LaF and the decentralized structure of the supply chain, which includes rising network costs, the schedules become more precise, and the cost balance among actors effectively increases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
spirit完成签到,获得积分10
1秒前
1秒前
yhm7426给yhm7426的求助进行了留言
1秒前
SciGPT应助12彡采纳,获得10
1秒前
科研通AI6应助Roderick采纳,获得10
2秒前
HJXM发布了新的文献求助10
2秒前
4秒前
4秒前
兜兜发布了新的文献求助10
4秒前
6秒前
日月同辉发布了新的文献求助10
6秒前
张先生发布了新的文献求助30
7秒前
8秒前
汪汪发布了新的文献求助10
8秒前
小小孟同学完成签到,获得积分20
8秒前
小树枝发布了新的文献求助10
8秒前
8秒前
9秒前
10秒前
微眠发布了新的文献求助10
11秒前
12秒前
王延森发布了新的文献求助10
12秒前
乐乐应助务实的蛋挞采纳,获得10
12秒前
彭于晏应助终陌采纳,获得10
12秒前
852应助磷酸瞳采纳,获得10
12秒前
13秒前
香蕉觅云应助吕晓鹏采纳,获得10
13秒前
14秒前
啦啦完成签到,获得积分10
14秒前
Reilly发布了新的文献求助10
14秒前
15秒前
dukang发布了新的文献求助10
16秒前
12彡发布了新的文献求助10
16秒前
16秒前
LZNUDT完成签到,获得积分20
16秒前
快乐尔蝶发布了新的文献求助10
17秒前
李李发布了新的文献求助10
17秒前
17秒前
17秒前
18秒前
高分求助中
Fermented Coffee Market 2000
合成生物食品制造技术导则,团体标准,编号:T/CITS 396-2025 1000
The Leucovorin Guide for Parents: Understanding Autism’s Folate 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Comparing natural with chemical additive production 500
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5243021
求助须知:如何正确求助?哪些是违规求助? 4409500
关于积分的说明 13725269
捐赠科研通 4278818
什么是DOI,文献DOI怎么找? 2347832
邀请新用户注册赠送积分活动 1345089
关于科研通互助平台的介绍 1303146