亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Optimization of ReaxFF Reactive Force Field Parameters for Cu/Si/O Systems via Neural Network Inversion with Application to Copper Oxide Interaction with Silicon

雷亚克夫 人工神经网络 材料科学 力场(虚构) 工艺优化 计算机科学 分子动力学 纳米技术 生物系统 人工智能 化学 工程类 光电子学 计算化学 原子间势 化学工程 冶金 生物
作者
Kamyar Akbari Roshan,Mahdi Khajeh Talkhoncheh,Mert Y. Sengul,David J. Miller,Adri C. T. van Duin
出处
期刊:Journal of Physical Chemistry C [American Chemical Society]
卷期号:127 (41): 20445-20458 被引量:3
标识
DOI:10.1021/acs.jpcc.3c03079
摘要

The presence of transition metal oxide impurities introduced during crystal formation or during the fabrication process may lead to a significant yield loss in microelectronics and device manufacturing. To enable a large-scale molecular dynamics study of the effects of copper oxide impurities inside silicon on the structural evolution and mechanical properties of Cu/Si/O systems, one needs to understand the diffusional characteristics of copper and oxygen compounds next to the silicon lattice. In this work, we introduce an accelerated deep learning-based reactive force field parametrization platform. In this platform, we train a deep neural network to learn the production of ReaxFF outputs, given a set of force field parameters. Subsequently, the trained neural network is used, as an alternative to ReaxFF, by means of the neural network inversion algorithm to seek the inputs to the neural network (force field parameters) that produce the experimental and quantum mechanics reference property values of the system. We compared the performance of the neural network inversion optimization algorithm with that of the previously used brute force search method by looking at the total optimization time and the total reduction of the discrepancies between the results of molecular dynamic simulation and the reference property values within the force field training set. The neural network inversion algorithm significantly reduces the average optimization time, which directly translates into less computational resources required for the optimization process. Moreover, we compared the quality of the force fields optimized by both algorithms in describing the chemical properties of the Cu/O systems, including the heat of formation and the relative phase stability. We demonstrated that the results of the force field, optimized using the proposed neural network inversion algorithm, align more closely with the reference chemical properties of Cu/O systems within the force field training set than those optimized by the brute force algorithm. We used this platform to develop a Cu/Si/O ReaxFF reactive force field by training on density functional theory (DFT) data, including heat of formation values for various Cu/Si/O materials. The developed force field was further used to perform molecular dynamics simulations on models with up to 3542 atoms to study atomistic interactions between copper oxide compounds and silicon by looking at the diffusional behavior of copper and oxygen atoms adjacent to the Si substrate. We found that the temperature substantially impacts the Cu oxide diffusion coefficient. Our simulation results enable us to comprehensively understand the effects of oxygen atoms on the diffusion of copper impurities into the silicon lattice. We showed that a Cu oxide cluster shows diffusion faster than that of a pure Cu cluster adjacent to a Si supercell. By studying the interaction between Cu oxide and Si nanolayers at different temperatures, we observed that at higher temperatures, oxygen atoms migrate from the initial CuOx material to diffuse into the Si phase. In addition, we showed that the absolute decay rate of the average Cu–Cu bond length is directly dependent on the simulation temperature.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LEMONS完成签到 ,获得积分10
4秒前
量子星尘发布了新的文献求助10
7秒前
烟花应助科研通管家采纳,获得10
15秒前
18秒前
Memory丶冷艳完成签到 ,获得积分10
21秒前
peachyartemis完成签到,获得积分10
21秒前
50秒前
cm关闭了cm文献求助
56秒前
58秒前
Jasper应助迦蓝采纳,获得10
1分钟前
科研通AI6应助谨慎的雨梅采纳,获得10
1分钟前
cathy完成签到 ,获得积分10
1分钟前
1分钟前
风华正茂发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
1分钟前
迦蓝发布了新的文献求助10
1分钟前
充电宝应助南橘采纳,获得10
1分钟前
科研通AI2S应助Lemon_ice采纳,获得10
1分钟前
1分钟前
1分钟前
Lucas应助谨慎的雨梅采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
Shion完成签到,获得积分10
2分钟前
2分钟前
lingling发布了新的文献求助10
2分钟前
董羽佳完成签到,获得积分10
2分钟前
宇文天思发布了新的文献求助10
2分钟前
2分钟前
king完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
大模型应助miki采纳,获得10
2分钟前
wdw2501完成签到,获得积分20
2分钟前
SciGPT应助lingling采纳,获得10
3分钟前
3分钟前
miki发布了新的文献求助10
3分钟前
领导范儿应助lingling采纳,获得10
3分钟前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Introducing Sociology Using the Stuff of Everyday Life 400
Conjugated Polymers: Synthesis & Design 400
Picture Books with Same-sex Parented Families: Unintentional Censorship 380
Metals, Minerals, and Society 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4255830
求助须知:如何正确求助?哪些是违规求助? 3788452
关于积分的说明 11888727
捐赠科研通 3438299
什么是DOI,文献DOI怎么找? 1886841
邀请新用户注册赠送积分活动 938034
科研通“疑难数据库(出版商)”最低求助积分说明 843677