Monitoring of chlorophyll-a and suspended sediment concentrations in optically complex inland rivers using multisource remote sensing measurements

遥感 环境科学 多光谱图像 沉积物 反演(地质) 卫星 叶绿素a 图像分辨率 多光谱模式识别 高光谱成像 计算机科学 地理 地质学 工程类 生物 古生物学 植物 构造盆地 航空航天工程 人工智能
作者
Yi Xiao,Jiahao Chen,Yan Xu,Shaoyun Guo,Xiaolei Nie,Yahui Guo,Xiran Li,Fanghua Hao,Yongshuo H. Fu
出处
期刊:Ecological Indicators [Elsevier]
卷期号:155: 111041-111041
标识
DOI:10.1016/j.ecolind.2023.111041
摘要

In recent decades, phytoplankton proliferation and sediment input to rivers (especially urban rivers) have become more dramatic under the compound pressure of climate change and human activities. Given the generally narrow width of rivers and current high spatial resolution satellites, which are limited by band settings, bandwidth, and the signal-to-noise ratio, UAVs with their exceptional spatiotemporal resolution can be used as a useful tool for river environmental monitoring and inversion uncertainty assessment. In this study, UAV-based hyperspectral (X20P) and multispectral (P4M) images, along with Sentinel-2 MultiSpectral Instrument (MSI), Landsat-8 Operational Land Imager (OLI) and Landsat-9 OLI2 data, were used to assess the uncertainty in retrieving chlorophyll-a (Chla) and suspended sediment (SS) concentrations in rivers. Chla and SS models based on UAV and satellite data were constructed using stepwise multiple regression and typical Chla and SS retrieval algorithms, respectively, and the performance of the models was the focus of our research. The results demonstrated that in the Chla concentration inversion, each sensor performed as follows: X20P > P4M > Landsat9 OLI2 > Sentinel-2 MSI > Landsat8 OLI, and the performance in the SS concentration inversion was as follows: X20P > Sentinel-2 MSI > P4M > Landsat9 OLI2 > Landsat8 OLI. In addition, the uncertainty of high spatial resolution satellite retrievals was analyzed with the assistance of the UAV-based model. Results showed that narrow bandwidths and finely tuned band settings are more essential for the Chla inversion. The typical Chla retrieval algorithm, NDCI, is only effective in certain bands (band 1 from 684 to 724 nm and band 2 from 660 to 680 nm). It is also noted that Landsat8 and Landsat9 lack some key band settings (e.g., the red-edge band of 700–710 nm), severely limiting practical application in relation to Chla. However, specific variances in different sensor bands have a relatively small impact on SS inversion, for example, the correlation between SS and the R/B (a typical SS retrieval algorithm) constructed by each sensor ranged from 0.68 to 0.77. Chla monitoring, on the other hand, necessitates a higher spatial resolution than SS monitoring. The accuracy decreased markedly when UAV images were resampled to 10 m and 30 m spatial resolution. However, it is not as crucial for the SS inversion, images with the original spatial resolution (RMSE<30cm = 6.28 mg/L) were resampled to 10 m resolution (RMSE10m = 5.85 mg/L) and 30 m resolution (RMSE30m = 4.08 mg/L) while using P4M for SS inversion, and the accuracy increased. Our results demonstrated and highlighted various options for future monitoring of Chla and SS, while exploiting the synergy between UAVs and satellites to achieve more precise observations at greater spatial and temporal scales, which will benefit aquatic environment management and protection.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
CodeCraft应助Liens采纳,获得10
1秒前
1秒前
1秒前
ztq完成签到 ,获得积分10
2秒前
穆思柔完成签到,获得积分10
2秒前
2秒前
脑洞疼应助zxyan采纳,获得10
2秒前
科研通AI6应助zhouleiwang采纳,获得10
2秒前
冷傲惠发布了新的文献求助10
2秒前
3秒前
leyang关注了科研通微信公众号
4秒前
顾矜应助张欣宇采纳,获得10
4秒前
4秒前
王婷静完成签到,获得积分10
4秒前
4秒前
yfy_fairy完成签到,获得积分10
4秒前
神明发布了新的文献求助10
5秒前
cc发布了新的文献求助10
5秒前
Salen-Cr发布了新的文献求助10
5秒前
5秒前
科研通AI6应助灿烂千阳采纳,获得10
5秒前
泡芙应助Yiminhua采纳,获得10
5秒前
whj完成签到,获得积分20
5秒前
科研通AI6应助biu采纳,获得10
6秒前
Triumph完成签到,获得积分10
6秒前
xxx完成签到,获得积分20
6秒前
Liz1054发布了新的文献求助10
6秒前
6秒前
慕青应助可爱的海莲采纳,获得10
7秒前
蔡勇强发布了新的文献求助10
7秒前
7秒前
阿七完成签到,获得积分20
8秒前
8秒前
呼啦啦完成签到 ,获得积分10
8秒前
9秒前
大哈鱼完成签到,获得积分20
9秒前
emmm发布了新的文献求助10
9秒前
9秒前
党阳阳完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608436
求助须知:如何正确求助?哪些是违规求助? 4693073
关于积分的说明 14876620
捐赠科研通 4717595
什么是DOI,文献DOI怎么找? 2544222
邀请新用户注册赠送积分活动 1509305
关于科研通互助平台的介绍 1472836