Monitoring of chlorophyll-a and suspended sediment concentrations in optically complex inland rivers using multisource remote sensing measurements

遥感 环境科学 多光谱图像 沉积物 反演(地质) 卫星 叶绿素a 图像分辨率 多光谱模式识别 高光谱成像 计算机科学 地理 地质学 工程类 生物 古生物学 植物 构造盆地 航空航天工程 人工智能
作者
Yi Xiao,Jiahao Chen,Yan Xu,Shaoyun Guo,Xiaolei Nie,Yahui Guo,Xiran Li,Fanghua Hao,Yongshuo H. Fu
出处
期刊:Ecological Indicators [Elsevier]
卷期号:155: 111041-111041
标识
DOI:10.1016/j.ecolind.2023.111041
摘要

In recent decades, phytoplankton proliferation and sediment input to rivers (especially urban rivers) have become more dramatic under the compound pressure of climate change and human activities. Given the generally narrow width of rivers and current high spatial resolution satellites, which are limited by band settings, bandwidth, and the signal-to-noise ratio, UAVs with their exceptional spatiotemporal resolution can be used as a useful tool for river environmental monitoring and inversion uncertainty assessment. In this study, UAV-based hyperspectral (X20P) and multispectral (P4M) images, along with Sentinel-2 MultiSpectral Instrument (MSI), Landsat-8 Operational Land Imager (OLI) and Landsat-9 OLI2 data, were used to assess the uncertainty in retrieving chlorophyll-a (Chla) and suspended sediment (SS) concentrations in rivers. Chla and SS models based on UAV and satellite data were constructed using stepwise multiple regression and typical Chla and SS retrieval algorithms, respectively, and the performance of the models was the focus of our research. The results demonstrated that in the Chla concentration inversion, each sensor performed as follows: X20P > P4M > Landsat9 OLI2 > Sentinel-2 MSI > Landsat8 OLI, and the performance in the SS concentration inversion was as follows: X20P > Sentinel-2 MSI > P4M > Landsat9 OLI2 > Landsat8 OLI. In addition, the uncertainty of high spatial resolution satellite retrievals was analyzed with the assistance of the UAV-based model. Results showed that narrow bandwidths and finely tuned band settings are more essential for the Chla inversion. The typical Chla retrieval algorithm, NDCI, is only effective in certain bands (band 1 from 684 to 724 nm and band 2 from 660 to 680 nm). It is also noted that Landsat8 and Landsat9 lack some key band settings (e.g., the red-edge band of 700–710 nm), severely limiting practical application in relation to Chla. However, specific variances in different sensor bands have a relatively small impact on SS inversion, for example, the correlation between SS and the R/B (a typical SS retrieval algorithm) constructed by each sensor ranged from 0.68 to 0.77. Chla monitoring, on the other hand, necessitates a higher spatial resolution than SS monitoring. The accuracy decreased markedly when UAV images were resampled to 10 m and 30 m spatial resolution. However, it is not as crucial for the SS inversion, images with the original spatial resolution (RMSE<30cm = 6.28 mg/L) were resampled to 10 m resolution (RMSE10m = 5.85 mg/L) and 30 m resolution (RMSE30m = 4.08 mg/L) while using P4M for SS inversion, and the accuracy increased. Our results demonstrated and highlighted various options for future monitoring of Chla and SS, while exploiting the synergy between UAVs and satellites to achieve more precise observations at greater spatial and temporal scales, which will benefit aquatic environment management and protection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
雨碎寒江发布了新的文献求助10
刚刚
多吃香菜完成签到,获得积分10
刚刚
1秒前
萧东辰完成签到,获得积分10
1秒前
zhuzhu发布了新的文献求助10
1秒前
hluo发布了新的文献求助10
1秒前
小吴完成签到 ,获得积分10
1秒前
张楚懿完成签到,获得积分10
1秒前
JamesPei应助ly采纳,获得10
2秒前
科研通AI2S应助kohu采纳,获得20
2秒前
2秒前
3237924531完成签到,获得积分10
3秒前
狐狸小姐完成签到,获得积分10
3秒前
彭于晏应助开朗战斗机采纳,获得10
3秒前
冷静绿旋发布了新的文献求助10
3秒前
Dreamchaser发布了新的文献求助10
3秒前
guojingjing发布了新的文献求助10
3秒前
咖喱发布了新的文献求助30
4秒前
4秒前
fpwx发布了新的文献求助10
4秒前
Owen应助时尚的萝采纳,获得10
4秒前
科研通AI6应助Son4904采纳,获得10
4秒前
天真玉米完成签到,获得积分10
4秒前
yangyang发布了新的文献求助10
5秒前
shendengya完成签到 ,获得积分10
5秒前
5秒前
张铭哲发布了新的文献求助10
6秒前
6秒前
发粪涂墙完成签到,获得积分10
6秒前
小青年儿完成签到 ,获得积分10
7秒前
朝qwer完成签到,获得积分10
7秒前
健忘的灵凡完成签到,获得积分10
7秒前
aa完成签到,获得积分10
7秒前
7秒前
7秒前
宋丽娟完成签到,获得积分10
8秒前
科目三应助小李采纳,获得10
8秒前
斯文败类应助浩然采纳,获得10
8秒前
zec200030完成签到,获得积分10
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667772
求助须知:如何正确求助?哪些是违规求助? 4887765
关于积分的说明 15121847
捐赠科研通 4826643
什么是DOI,文献DOI怎么找? 2584209
邀请新用户注册赠送积分活动 1538157
关于科研通互助平台的介绍 1496386