亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multichannel InSAR elevation reconstruction method based on dual-stream network

仰角(弹道) 计算机科学 人工智能 干涉合成孔径雷达 地形 数字高程模型 计算机视觉 解码方法 合并(版本控制) 遥感 模式识别(心理学) 合成孔径雷达 地质学 算法 地图学 数学 地理 几何学 情报检索
作者
Xianming Xie,Geng Dianqiang,Hou Guozheng,Qingning Zeng,Zheng Zhan-heng
出处
期刊:Optics and Lasers in Engineering [Elsevier]
卷期号:172: 107874-107874 被引量:1
标识
DOI:10.1016/j.optlaseng.2023.107874
摘要

This paper presents a multichannel InSAR elevation reconstruction method based on deep learning, where a dual-stream network consisting of an elevation reconstruction stream and a boundary detection stream, named as ERSBDS, is built to reconstruct elevation maps for observed terrains, from multiple interferograms. First, the elevation reconstruction stream adopts a modified DeepLabV3+ architecture, in which the Xception network is replaced by the lightweight network called MobileNetV3 in the encoder for not only reducing the network parameters but also maintaining the performance of the network, and then a spatial attention module is added to the encoding and decoding path to enhance the network's attention to the spatial information of feature maps. Second, the boundary detection stream is mainly composed of residual blocks, which can detect the boundary information of observed terrains and merge it into the elevation reconstruction stream to improve the accuracy of elevation reconstruction for observed scenes. Finally, a suitable data set is constructed to enable the trained network to accurately reconstruct elevation maps for observed scenes. The experiments for multichannel InSAR elevation reconstruction for observed scenes demonstrate the effectiveness of the proposed method, and show the advantages of this method in the accuracy and efficiency of elevation reconstruction, compared with some of the most commonly used methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Freedom完成签到 ,获得积分10
1秒前
xiaobizaizhi233完成签到,获得积分10
4秒前
可乐完成签到 ,获得积分10
6秒前
6秒前
Jeongin完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
14秒前
科目三应助OYJH采纳,获得10
24秒前
科研兵完成签到 ,获得积分10
28秒前
32秒前
48秒前
科研通AI6应助科研通管家采纳,获得10
51秒前
英俊的铭应助科研通管家采纳,获得10
51秒前
科研通AI6应助科研通管家采纳,获得10
51秒前
NexusExplorer应助科研通管家采纳,获得10
51秒前
科研通AI6.1应助Okanryo采纳,获得10
59秒前
sulin完成签到 ,获得积分10
59秒前
1分钟前
1分钟前
1分钟前
如意秋珊完成签到 ,获得积分10
1分钟前
秦时明月发布了新的文献求助10
1分钟前
丁一发布了新的文献求助10
1分钟前
1分钟前
1分钟前
孙泉发布了新的文献求助10
1分钟前
pegasus0802完成签到,获得积分10
1分钟前
Gryphon完成签到,获得积分10
1分钟前
钮钴禄鬼鬼完成签到 ,获得积分10
1分钟前
Akim应助孙泉采纳,获得10
1分钟前
1分钟前
LCB发布了新的文献求助10
1分钟前
IMP完成签到 ,获得积分10
1分钟前
1分钟前
LCB完成签到,获得积分10
1分钟前
1分钟前
1分钟前
桐桐应助玉米采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
2分钟前
顾矜应助LCB采纳,获得10
2分钟前
Kiki发布了新的文献求助10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5755160
求助须知:如何正确求助?哪些是违规求助? 5491833
关于积分的说明 15380956
捐赠科研通 4893420
什么是DOI,文献DOI怎么找? 2632044
邀请新用户注册赠送积分活动 1579872
关于科研通互助平台的介绍 1535729