Deep Learning for Near-Surface Air Temperature Estimation from FY-4A Satellite Data

地球静止轨道 遥感 环境科学 均方误差 气象学 卫星 计算机科学 雷达 大气模式 地质学 地理 电信 数学 统计 航空航天工程 工程类
作者
Shanmin Yang,Ren Qing,Ningfang Zhou,Yan Zhang,Xi Wu
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:17: 13108-13119 被引量:3
标识
DOI:10.1109/jstars.2023.3322343
摘要

Near-surface air temperature is a crucial weather parameter that significantly impacts human health and is widely utilized in numerical weather forecasting and climate prediction studies. However, the most common ground-based meteorological station observation and radar observation are often limited by geographic and natural constraints. With the advantages of global coverage and high spatiotemporal resolution, satellite remote sensing has become a valuable support in overcoming data scarcity issues related to ground-based station and radar observations in complex geographic and natural conditions. Although remote sensing indirectly reflects atmosphere variables (e.g., near-surface air temperature), accurately estimating the atmosphere variables through satellite remote sensing remains a significant challenge. This paper introduces a deep learning Transformer-based neural network (TaNet) for near-surface air temperature estimation. TaNet automatically extracts information from imageries captured by China's new-generation geostationary meteorological satellite FengYun-4A and generates grid near-surface air temperature data in near real-time. Extensive experiments conducted using the state-of-the-art operational reanalysis product ERA5 and meteorological station observations as benchmark standards demonstrate the effectiveness and superiority of TaNet. It achieves an impressive Pearson's correlation coefficient (CC) of 0.990 with ERA5 and 0.959 with station observations, outperforming the other products, such as CFSv2, CRA, and U-Net, on root mean square error (RMSE) and CC metrics. TaNet reduces the RMSE of CFSv2, CRA, and U-Net by a margin of 10.551% (2.594 ${}^{\circ }\mathrm{C}$ vs. 2.900 ${}^{\circ }\mathrm{C}$ ), 2.261% (2.594 ${}^{\circ }\mathrm{C}$ vs. 2.654 ${}^{\circ }\mathrm{C}$ ), and 5.535% (2.594 ${}^{\circ }\mathrm{C}$ vs. 2.746 ${}^{\circ }\mathrm{C}$ ), respectively, using station observations as the benchmark.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
自由能完成签到,获得积分20
1秒前
1秒前
Torment发布了新的文献求助10
1秒前
1秒前
阿楠完成签到,获得积分10
4秒前
5秒前
orixero应助科研通管家采纳,获得10
7秒前
无花果应助科研通管家采纳,获得10
7秒前
英姑应助科研通管家采纳,获得10
7秒前
慕青应助科研通管家采纳,获得10
7秒前
充电宝应助科研通管家采纳,获得10
7秒前
Jasper应助科研通管家采纳,获得10
7秒前
顾矜应助科研通管家采纳,获得50
7秒前
天天快乐应助科研通管家采纳,获得10
7秒前
8秒前
8秒前
汉堡包应助鱼香肉丝采纳,获得10
9秒前
9秒前
十分喜欢完成签到,获得积分10
10秒前
少少完成签到 ,获得积分10
12秒前
鱼鱼发布了新的文献求助10
13秒前
最初的远方完成签到,获得积分10
13秒前
16秒前
量子星尘发布了新的文献求助30
16秒前
19秒前
漂亮采波发布了新的文献求助10
21秒前
21秒前
认真的映安完成签到,获得积分10
23秒前
鱼香肉丝发布了新的文献求助10
23秒前
杨三多发布了新的文献求助10
26秒前
27秒前
颖中竹子完成签到,获得积分10
28秒前
酷波er应助如风采纳,获得10
29秒前
qqqqq完成签到,获得积分10
30秒前
小酥饼完成签到,获得积分10
32秒前
852应助弓长张采纳,获得10
32秒前
大萍子发布了新的文献求助10
33秒前
35秒前
兼得完成签到,获得积分10
37秒前
星辰大海应助123采纳,获得10
39秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954469
求助须知:如何正确求助?哪些是违规求助? 3500461
关于积分的说明 11099572
捐赠科研通 3230989
什么是DOI,文献DOI怎么找? 1786217
邀请新用户注册赠送积分活动 869884
科研通“疑难数据库(出版商)”最低求助积分说明 801713