Deep Learning for Near-Surface Air Temperature Estimation from FY-4A Satellite Data

地球静止轨道 遥感 环境科学 均方误差 气象学 卫星 计算机科学 雷达 大气模式 地质学 地理 电信 数学 统计 航空航天工程 工程类
作者
Shanmin Yang,Ren Qing,Ningfang Zhou,Yan Zhang,Xi Wu
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:17: 13108-13119 被引量:3
标识
DOI:10.1109/jstars.2023.3322343
摘要

Near-surface air temperature is a crucial weather parameter that significantly impacts human health and is widely utilized in numerical weather forecasting and climate prediction studies. However, the most common ground-based meteorological station observation and radar observation are often limited by geographic and natural constraints. With the advantages of global coverage and high spatiotemporal resolution, satellite remote sensing has become a valuable support in overcoming data scarcity issues related to ground-based station and radar observations in complex geographic and natural conditions. Although remote sensing indirectly reflects atmosphere variables (e.g., near-surface air temperature), accurately estimating the atmosphere variables through satellite remote sensing remains a significant challenge. This paper introduces a deep learning Transformer-based neural network (TaNet) for near-surface air temperature estimation. TaNet automatically extracts information from imageries captured by China's new-generation geostationary meteorological satellite FengYun-4A and generates grid near-surface air temperature data in near real-time. Extensive experiments conducted using the state-of-the-art operational reanalysis product ERA5 and meteorological station observations as benchmark standards demonstrate the effectiveness and superiority of TaNet. It achieves an impressive Pearson's correlation coefficient (CC) of 0.990 with ERA5 and 0.959 with station observations, outperforming the other products, such as CFSv2, CRA, and U-Net, on root mean square error (RMSE) and CC metrics. TaNet reduces the RMSE of CFSv2, CRA, and U-Net by a margin of 10.551% (2.594 ${}^{\circ }\mathrm{C}$ vs. 2.900 ${}^{\circ }\mathrm{C}$ ), 2.261% (2.594 ${}^{\circ }\mathrm{C}$ vs. 2.654 ${}^{\circ }\mathrm{C}$ ), and 5.535% (2.594 ${}^{\circ }\mathrm{C}$ vs. 2.746 ${}^{\circ }\mathrm{C}$ ), respectively, using station observations as the benchmark.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
ZYH完成签到,获得积分10
1秒前
1秒前
淡然语琴完成签到,获得积分10
2秒前
花花发布了新的文献求助10
3秒前
3秒前
3秒前
CHEE完成签到,获得积分10
3秒前
顾矜应助枕套采纳,获得10
4秒前
明亮飞双发布了新的文献求助10
4秒前
Hana发布了新的文献求助10
4秒前
狗十七发布了新的文献求助10
4秒前
这几个字真的有十个字完成签到,获得积分10
5秒前
美满的问薇关注了科研通微信公众号
5秒前
5秒前
飞先生完成签到 ,获得积分20
6秒前
luo完成签到 ,获得积分10
6秒前
7秒前
粗心的孱完成签到,获得积分20
7秒前
科研通AI2S应助芽芽采纳,获得10
7秒前
木木完成签到,获得积分10
7秒前
7秒前
7秒前
LYB吕完成签到,获得积分10
7秒前
华仔应助nnnnnn采纳,获得10
7秒前
zz完成签到 ,获得积分10
8秒前
8秒前
Cherry发布了新的文献求助10
8秒前
今后应助木棉采纳,获得10
9秒前
9秒前
yyy发布了新的文献求助10
9秒前
小星星完成签到,获得积分10
10秒前
东方欲晓应助xbq采纳,获得100
11秒前
xusuizi发布了新的文献求助10
12秒前
荔枝发布了新的文献求助10
12秒前
zjj完成签到,获得积分10
12秒前
飞先生发布了新的文献求助10
13秒前
14秒前
寄云间完成签到,获得积分10
14秒前
领导范儿应助LNN采纳,获得10
14秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3227246
求助须知:如何正确求助?哪些是违规求助? 2875383
关于积分的说明 8190527
捐赠科研通 2542584
什么是DOI,文献DOI怎么找? 1372834
科研通“疑难数据库(出版商)”最低求助积分说明 646561
邀请新用户注册赠送积分活动 620994