NRDL: Decentralized user preference learning for privacy-preserving next POI recommendation

计算机科学 偏爱 前提 循环神经网络 机器学习 推荐系统 学习排名 人工智能 原始数据 情报检索 兴趣点 用户建模 数据挖掘 人工神经网络 用户界面 排名(信息检索) 语言学 哲学 程序设计语言 经济 微观经济学 操作系统
作者
Jingmin An,Guanyu Li,Wei Jiang
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:239: 122421-122421 被引量:7
标识
DOI:10.1016/j.eswa.2023.122421
摘要

Predicting where a user goes next in terms of his or her previously visited points of interest (POIs) is significant for facilitating users’ daily lives. Simultaneously, it must be acknowledged that the check-in and trajectory information of the user is absolutely disclosed to others in location-based social networks when recommending the next POIs. Therefore, how to achieve an accurate next POI recommendation on the premise of privacy preservation is a critical challenge. To address this challenge, we propose decentralized user preference learning for privacy-preserving next POI recommendation, called NRDL. First, to capture the user’s next POI preference, we model the user’s real-time demand representation by POI profile, POI category, absolute time, transition time and distance between previously visited POIs, which is input into an attention-based recurrent neural network (RNN) model for embedding. Second, to perform privacy preservation, we develop a decentralized learning framework that can achieve user preference learning by raw data on each user’s side. Learning on each user’s side can make the privacy data of the user not be revealed to platforms or others, and learning from raw data can guarantee the value of check-ins and further accuracy. Finally, we evaluate the proposed model on two widely used Gowalla and Foursquare datasets, and the improvements over the state-of-the-art model are 25.00% and 9.95% at recall@1 and NDCG@1 on Gowalla as well as 22.51% and 10.59% on Foursquare.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
程琳发布了新的文献求助10
2秒前
yuyyyi发布了新的文献求助10
2秒前
韦鑫龙完成签到,获得积分10
2秒前
2秒前
坚强的安柏完成签到,获得积分10
2秒前
常雨点儿发布了新的文献求助10
4秒前
小森发布了新的文献求助10
5秒前
zj完成签到,获得积分10
5秒前
NexusExplorer应助严三笑采纳,获得10
6秒前
汉堡包应助由道罡采纳,获得10
7秒前
7秒前
9秒前
10秒前
科研通AI2S应助白华苍松采纳,获得10
10秒前
11秒前
NexusExplorer应助未央采纳,获得10
13秒前
桐桐应助Red-Rain采纳,获得10
13秒前
Miriammmmm完成签到,获得积分10
14秒前
懒羊羊完成签到 ,获得积分10
14秒前
哟嚛发布了新的文献求助10
15秒前
科目三应助HAHA采纳,获得10
16秒前
初之发布了新的文献求助10
16秒前
赘婿应助lalala采纳,获得10
17秒前
17秒前
iuuuu完成签到 ,获得积分10
17秒前
量子星尘发布了新的文献求助10
18秒前
Hello应助水下月采纳,获得10
19秒前
胡图图完成签到,获得积分20
21秒前
21秒前
sssjjjxx完成签到,获得积分20
23秒前
23秒前
23秒前
玄风应助帅气小刺猬采纳,获得10
24秒前
25秒前
28秒前
月出西山上完成签到 ,获得积分10
28秒前
思源应助鲤鱼凛采纳,获得10
28秒前
seedcui发布了新的文献求助10
28秒前
快乐曼荷发布了新的文献求助10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5537102
求助须知:如何正确求助?哪些是违规求助? 4624693
关于积分的说明 14592890
捐赠科研通 4565218
什么是DOI,文献DOI怎么找? 2502220
邀请新用户注册赠送积分活动 1480944
关于科研通互助平台的介绍 1452123