NRDL: Decentralized user preference learning for privacy-preserving next POI recommendation

计算机科学 偏爱 前提 循环神经网络 机器学习 推荐系统 学习排名 人工智能 原始数据 情报检索 兴趣点 用户建模 数据挖掘 人工神经网络 用户界面 排名(信息检索) 哲学 操作系统 经济 微观经济学 程序设计语言 语言学
作者
Jingmin An,Guanyu Li,Wei Jiang
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:239: 122421-122421 被引量:7
标识
DOI:10.1016/j.eswa.2023.122421
摘要

Predicting where a user goes next in terms of his or her previously visited points of interest (POIs) is significant for facilitating users’ daily lives. Simultaneously, it must be acknowledged that the check-in and trajectory information of the user is absolutely disclosed to others in location-based social networks when recommending the next POIs. Therefore, how to achieve an accurate next POI recommendation on the premise of privacy preservation is a critical challenge. To address this challenge, we propose decentralized user preference learning for privacy-preserving next POI recommendation, called NRDL. First, to capture the user’s next POI preference, we model the user’s real-time demand representation by POI profile, POI category, absolute time, transition time and distance between previously visited POIs, which is input into an attention-based recurrent neural network (RNN) model for embedding. Second, to perform privacy preservation, we develop a decentralized learning framework that can achieve user preference learning by raw data on each user’s side. Learning on each user’s side can make the privacy data of the user not be revealed to platforms or others, and learning from raw data can guarantee the value of check-ins and further accuracy. Finally, we evaluate the proposed model on two widely used Gowalla and Foursquare datasets, and the improvements over the state-of-the-art model are 25.00% and 9.95% at recall@1 and NDCG@1 on Gowalla as well as 22.51% and 10.59% on Foursquare.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ChenhaoTong发布了新的文献求助10
1秒前
CGFHEMAN完成签到 ,获得积分10
1秒前
Singularity应助科研通管家采纳,获得10
2秒前
在水一方应助科研通管家采纳,获得10
2秒前
无花果应助科研通管家采纳,获得10
2秒前
所所应助科研通管家采纳,获得10
2秒前
Singularity应助科研通管家采纳,获得10
2秒前
天天快乐应助科研通管家采纳,获得10
2秒前
SciGPT应助科研通管家采纳,获得10
2秒前
2秒前
婷糖完成签到,获得积分20
2秒前
科目三应助积极的尔岚采纳,获得10
2秒前
Ava应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
Akim应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
3秒前
3秒前
华仔应助科研通管家采纳,获得10
3秒前
3秒前
Jasper应助科研通管家采纳,获得10
3秒前
4秒前
念姬发布了新的文献求助10
4秒前
6秒前
小巧凝竹完成签到 ,获得积分10
6秒前
Lucas应助王大壮采纳,获得10
6秒前
Star完成签到 ,获得积分10
8秒前
9秒前
LeonZhang发布了新的文献求助10
9秒前
9秒前
如许完成签到,获得积分10
9秒前
banana完成签到,获得积分20
10秒前
10秒前
666应助无情的水蓉采纳,获得10
11秒前
Luna发布了新的文献求助10
11秒前
junyue完成签到,获得积分10
11秒前
T拐拐发布了新的文献求助10
13秒前
666应助Leeny采纳,获得10
13秒前
科研通AI2S应助廖少跑不快采纳,获得10
14秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966370
求助须知:如何正确求助?哪些是违规求助? 3511789
关于积分的说明 11159900
捐赠科研通 3246400
什么是DOI,文献DOI怎么找? 1793416
邀请新用户注册赠送积分活动 874427
科研通“疑难数据库(出版商)”最低求助积分说明 804388