NRDL: Decentralized user preference learning for privacy-preserving next POI recommendation

计算机科学 偏爱 前提 循环神经网络 机器学习 推荐系统 学习排名 人工智能 原始数据 情报检索 兴趣点 用户建模 数据挖掘 人工神经网络 用户界面 排名(信息检索) 语言学 哲学 程序设计语言 经济 微观经济学 操作系统
作者
Jingmin An,Guanyu Li,Wei Jiang
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:239: 122421-122421 被引量:7
标识
DOI:10.1016/j.eswa.2023.122421
摘要

Predicting where a user goes next in terms of his or her previously visited points of interest (POIs) is significant for facilitating users’ daily lives. Simultaneously, it must be acknowledged that the check-in and trajectory information of the user is absolutely disclosed to others in location-based social networks when recommending the next POIs. Therefore, how to achieve an accurate next POI recommendation on the premise of privacy preservation is a critical challenge. To address this challenge, we propose decentralized user preference learning for privacy-preserving next POI recommendation, called NRDL. First, to capture the user’s next POI preference, we model the user’s real-time demand representation by POI profile, POI category, absolute time, transition time and distance between previously visited POIs, which is input into an attention-based recurrent neural network (RNN) model for embedding. Second, to perform privacy preservation, we develop a decentralized learning framework that can achieve user preference learning by raw data on each user’s side. Learning on each user’s side can make the privacy data of the user not be revealed to platforms or others, and learning from raw data can guarantee the value of check-ins and further accuracy. Finally, we evaluate the proposed model on two widely used Gowalla and Foursquare datasets, and the improvements over the state-of-the-art model are 25.00% and 9.95% at recall@1 and NDCG@1 on Gowalla as well as 22.51% and 10.59% on Foursquare.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
YYL发布了新的文献求助10
刚刚
任蛹发布了新的文献求助10
刚刚
2秒前
2秒前
2秒前
2秒前
3秒前
Dicy发布了新的文献求助10
4秒前
JamesPei应助暗号采纳,获得10
4秒前
量子星尘发布了新的文献求助10
5秒前
6秒前
Starry发布了新的文献求助10
6秒前
上官若男应助诺一44采纳,获得10
7秒前
酷波er应助Catalysis123采纳,获得10
7秒前
7秒前
林布林发布了新的文献求助10
8秒前
8秒前
xiaoyu123发布了新的文献求助10
8秒前
9秒前
zyq发布了新的文献求助10
9秒前
Hyp完成签到 ,获得积分10
11秒前
12秒前
高兴梦竹发布了新的文献求助10
12秒前
12秒前
时势造英雄完成签到 ,获得积分10
12秒前
任蛹完成签到,获得积分10
13秒前
高兴幼旋发布了新的文献求助10
13秒前
wx完成签到,获得积分10
13秒前
14秒前
情怀应助zengyangyu采纳,获得30
14秒前
bkagyin应助阁下宛歆采纳,获得10
15秒前
15秒前
16秒前
犇骉完成签到,获得积分10
16秒前
17秒前
17秒前
量子星尘发布了新的文献求助100
18秒前
18秒前
latata发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
International Encyclopedia of Business Management 1000
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4933907
求助须知:如何正确求助?哪些是违规求助? 4201940
关于积分的说明 13055538
捐赠科研通 3976004
什么是DOI,文献DOI怎么找? 2178697
邀请新用户注册赠送积分活动 1195062
关于科研通互助平台的介绍 1106433